Pilot Applications of the SCE Functional for the Description of Strong Correlation in Adiabatic TDDFT

André Mirtschink[†], Umberto De Giovannini[‡], Angel Rubio[‡], Paola Gori-Giorgi[†]

contact: a.p.mirtschink@vu.nl

[†] Department of Theoretical Chemistry, FEW, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands,

[‡] Nano-Bio Spectroscopy group and ETSF Scientific Development Centre, Universidad del Pais Vasco, CFM CSIC-UPV/EHU-MPC and DIPC, Av. Tolosa 72, E-20018 Donostia, Spain and ETSF

Kohn-Sham reference system

electrons are modeled as

- charge clouds (quantum mechanical picture)
- without interaction between them
- move in an external field chosen such that the physical density is obtained

effectively the KS single-particle equations are solved

$$\left[-\frac{1}{2} \nabla^2 + v_s[\rho](\mathbf{r}) \right] \varphi_i(\mathbf{r}) = \varepsilon_i \varphi_i(\mathbf{r}) \tag{1}$$

Adiabatic connection [1]

... is a formalism that allows for a rigorous construction of an approximate energy density functional where both reference systems are combined

$$E_{xc}[\rho] = \int_{0}^{1} d\lambda \langle \Psi_{\lambda}[\rho] | \hat{V}_{ee} | \Psi_{\lambda}[\rho] \rangle - E_{H}[\rho]$$

$$\equiv \int_{0}^{1} d\lambda W_{\lambda}[\rho]$$
(3)

where the wavefunction $\Psi_{\lambda}[\rho]$ stems from the energy minimization

$$\min_{\Psi \to \rho} \langle \Psi | \hat{T} + \lambda \hat{V}_{ee} | \Psi \rangle \qquad \forall \quad \lambda \in \mathbb{R}$$

and for $\lambda \to 0$ the KS reference system is encountered and for $\lambda \to \infty$ we have the SCE reference system^[2]

 $|F[\rho] \approx T_s[\rho] + V_{ee}^{SCE}[\rho]|$

SCE reference system^[2]

electrons are modeled as

- point charges (classical picture)
- no kinetic energy
- electronic positions are thus perfectly correlated (strictly correlated electrons, **SCE**)

vrije Universiteit amsterdam

ullet co-motion functions ${f f}_i({f r})$ for all reference positions ${f r}$ follow from the SCE differential equation

$$\rho(\mathbf{r}) d\mathbf{r} = \rho(\mathbf{f}_i(\mathbf{r})) d\mathbf{f}_i(\mathbf{r}) \qquad \forall \quad i \in 2 \dots N$$
 (2)

that is solved such that the potential energy for each electronic arrangement is the same

KS-SCE method [3,4]

we do now approximate the coupling constant integrand W_{λ} of eq. (3) for all λ by its value in the strong-interaction limit^[5]

$$W_{\lambda} \approx V_{ee}^{SCE}[\rho] = \int d\mathbf{r} \frac{\rho(\mathbf{r})}{N} \sum_{i>2}^{N} \frac{1}{|\mathbf{r} - \mathbf{f}_i(\mathbf{r})|}$$

which is equivalent to a linear interpolation on W_{λ} , and a method results that is exact for weakly and strongly correlated systems and approximate in between these limits when solved self consistently

note that we do not break spin symmetry!

SCE functional for fractional electron numbers^[6,7]

as the SCE functional models electrons as point charges, can we treat noninteger electron numbers $Q = N + \eta^{[8]}$? Yes! Because a rigorous solution of the SCE differential eq. (2) is possible

• e.g. in 1D we find that the density in between two electronic positions always integrates to 1

$$\int_{f_i(x)}^{f_{i+1}(x)} dy \, \rho(y) = 1$$

and for a Gaussian containing 2.5 e we sometimes find two or three electrons inside the density

• let's check on the derivative discontinuity of the SCE functional in the Hydrogen nuclear field

we have it, although a sharp step structure is only obtained for very strongly correlated systems, e.g. Hooke's atom

• other good news: **KS-SCE binds** H⁻

- KS-SCE+L... are local corrections to the SCE functional that derive from the homogeneous electron gas but: they are not self-interaction free though: we have ideas on how to cure this $^{[10]}$
- for comparison we give the maximum number of electrons to be bound with the traditional functionals (also spin restricted):

	Q_{max}
KS-LDA:	1.71
KS-GGA:	1.70
KS-metaGGA:	1.73
KS-hybrid:	1.75

in a ET-QZ3P+3diffuse basis set

KS-TDDFT with the adiabatic SCE functional [9]

the SCE functional exerts a smoothed derivative discontinuity - can we describe charge transfer excitations in adiabatic TDDFT?

• we did apply the KS-SCE method to a 1D model for the H₂ molecule and consider the electron hopping $HH \rightarrow H^+H^-$

ullet at $R=25 {
m a_{Bohr}}$ we estimate the exact CT peak from the total energies

$$\omega_{CT} \approx I_H - A_H - 1/R$$
$$= 0.569 \text{Ha}$$

and an SCE estimate can be obtained from the orbital eigenvalues

$$\omega_{CT}^{SCE} \approx -\varepsilon_{HOMO}^{H} + \varepsilon_{HOMO}^{H^-,SCE} - 1/R$$

$$= 0.541 \mathrm{Ha}$$

• precondition is of course that 1D H⁻ is bound - we do!

CT peak can be identified at $\omega \approx 0.516 \mathrm{Ha}$ ω shows the right 1/R behavior upon further dissociation excitation intensity vanishes too

Implications for applications

• promising for CT description of real-world matter by adiabatic **TDDFT**

problem: SCE differential eq. (2) can so far be only solved for spherically symmetric 3D densities solution 1: construction of approximate co-motion functions

 $\mathbf{f}_i(\mathbf{r})$ by geometrical arguments → poster by S. Vuckovic "Dissociating chemical bond in the

strictly - correlated regime of density functional theory" solution 2: non-local radius model to approximate SCE functional

→ poster by L. Wagner "Capturing strong electron correlation with nonlocal density functionals"

- promising for modeling of quantum transport in nano devices → G. Lani, A. Mirtschink, S. Kurth, P. Gori-Giorgi, in preparation
- poster on fundamental aspects of ASCE by G. Lani "The SCE" functional in the time domain: insights into its formal properties"

References

- [1] J. Harris, R. Jones, J. Phys. F 4, 1170 (1974)
- O. Gunnarsson, B. I. Lundqvist, Phys. Rev. B 13, 4274 (1976)
- [3] F. Malet, P. Gori-Giorgi, Phys. Rev. Lett. **109**, 246402 (2012)
- D. C. Langreth, J. P. Perdew, Solid State Commun. 17, 1425 (1975) [4] F. Malet, A. Mirtschink, J. C. Cremon, S. M. Reimann, P. Gori-Giorgi, Phys. Rev. B 87, 115146 (2013) [8] J. P. Perdew, R. G. Parr, M. Levy, J. L. Balduz, Phys. Rev. Lett. 49, 1691 (1982)
- [5] A. Mirtschink, M. Seidl and P. Gori-Giorgi, J. Chem. Theory Comput. 8, 3097 (2012) [2] P. Gori-Giorgi, M. Seidl, Phys. Chem. Chem. Phys. 12, 14405 (2010) [6] A. Mirtschink, M. Seidl, P. Gori-Giorgi, Phys. Rev. Lett. 111, 126402 (2013)
- [7] A. Mirtschink, C. J. Umrigar, J. D. Morgan III, P. Gori-Giorgi J. Chem. Phys. 140, 18A532 (2014)

[9] A. Mirtschink, U. De Giovannini, A. Rubio, P. Gori-Giorgi, in preparation

4 Aq=E4 E[s]=F[s]+]dr. O(r) S(r) E_[]=E_[]=min (312)

Energy Density Functionals

of Density Functional Theory