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Kohn-Sham reference system
electrons are modeled as

• charge clouds (quantum mechanical picture)

• without interaction between them

•move in an external field chosen such that the physical
density is obtained

• effectively the KS single-particle equations are solved[
−1

2
∇2 + vs[ρ](r)

]
ϕi(r) = εiϕi(r) (1)

Adiabatic connection[1]

. . . is a formalism that allows for a rigorous construction of
an approximate energy density functional where both reference
systems are combined

Exc[ρ] =

∫ 1

0
dλ 〈Ψλ[ρ]|V̂ee|Ψλ[ρ]〉 − EH [ρ]

≡
∫ 1

0
dλWλ[ρ] (3)

where the wavefunction Ψλ[ρ stems from the energy minimiza-
tion

min
Ψ→ρ
〈Ψ|T̂ + λV̂ee|Ψ〉 ∀ λ ∈ R

and for λ→ 0 the KS reference system is encountered and for
λ→∞ we have the SCE reference system[2]

SCE reference system[2]

electrons are modeled as

• point charges (classical picture)

• no kinetic energy

• electronic positions are thus perfectly correlated (strictly
correlated electrons, SCE)

r1 r2 = f(r1) r′1 r′2 = f(r′1)

• co-motion functions fi(r) for all reference positions r follow
from the SCE differential equation

ρ(r) dr = ρ(fi(r)) dfi(r) ∀ i ∈ 2 . . . N (2)

that is solved such that the potential energy for each elec-
tronic arrangement is the same

KS-SCE method[3,4]

we do now approximate the coupling constant integrand Wλ of eq. (3) for all λ by its value in

the strong-interaction limit[5]

Wλ ≈ V SCEee [ρ] =

∫
dr
ρ(r)

N

N∑
i>2

1

|r− fi(r)|

which is equivalent to a linear interpolation on Wλ, and a method results that is exact for
weakly and strongly correlated systems and approximate in between these limits when solved
self consistently

input density
ρguess(r)

solve SCE differential eq. (2)
to obtain the co-motion functions fi

compute SCE potential by integrating
the equilibrium condition

∇vSCE(r) = −∑N
i 6=1

r−fi(r)
|r−fi(r)|3

solve KS eq. (1) with
vs(r) ≈ vnuclei(r) + vSCE(r)

compute density
from Slater determinant

ρ(r) =
∑occ
i |ϕi(r)|2

compare densities
ρinitial(r) ? ρupdate(r)

?→6≈
?→≈

compute approximate energy
from KS-SCE functional

F [ρ] ≈ Ts[ρ] + V SCE
ee [ρ]

self-consistent cycle

note that we do not break spin symmetry!

SCE functional for fractional electron numbers[6,7]

as the SCE functional models electrons as point charges, can we treat non-
integer electron numbers Q = N + η[8]? Yes! Because a rigorous solution of
the SCE differential eq. (2) is possible

• e.g. in 1D we find that the density in between two electronic positions
always integrates to 1 ∫ fi+1(x)

fi(x)
dy ρ(y) = 1

and for a Gaussian containing 2.5 e− we sometimes find two or three elec-
trons inside the density
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• let’s check on the derivative discontinuity of the SCE functional in the
Hydrogen nuclear field
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we have it, although a sharp step structure is only obtained for very strongly
correlated systems, e.g. Hooke’s atom

• other good news: KS-SCE binds H−

• KS-SCE+L. . . are local corrections to the SCE functional
that derive from the homogeneous electron gas
but: they are not self-interaction free
though: we have ideas on how to cure this[10]

• for comparison we give the maximum number of electrons
to be bound with the traditional functionals (also spin re-
stricted):

Qmax

KS-LDA: 1.71

KS-GGA: 1.70

KS-metaGGA: 1.73

KS-hybrid: 1.75

in a ET-QZ3P+3diffuse basis set

KS-TDDFT with the adiabatic SCE functional[9] Implications for applications
the SCE functional exerts a smoothed derivative discontinuity – can we de-
scribe charge transfer excitations in adiabatic TDDFT?

• we did apply the KS-SCE method to a 1D model for the H2 molecule and
consider the electron hopping HH → H+H−

H H H+ H−

e−

hλ

• at R = 25aBohr we estimate the exact CT peak from the total energies

ωCT ≈ IH − AH − 1/R

= 0.569Ha

and an SCE estimate can be obtained from the orbital eigenvalues

ωSCECT ≈ −εHHOMO + ε
H−,SCE
HOMO − 1/R

= 0.541Ha

• precondition is of course that 1D H− is bound - we do!
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CT peak can be identified at ω ≈ 0.516Ha
ω shows the right 1/R behavior upon further dissociation
excitation intensity vanishes too

• promising for CT description of real-world matter by adiabatic
TDDFT
problem: SCE differential eq. (2) can so far be only solved
for spherically symmetric 3D densities
solution 1: construction of approximate co-motion functions
fi(r) by geometrical arguments
→ poster by S. Vuckovic “Dissociating chemical bond in the
strictly – correlated regime of density functional theory”
solution 2: non-local radius model to approximate SCE func-
tional
→ poster by L. Wagner “Capturing strong electron correla-
tion with nonlocal density functionals”

• promising for modeling of quantum transport in nano devices
→ G. Lani, A. Mirtschink, S. Kurth, P. Gori-Giorgi, in prepa-
ration

• poster on fundamental aspects of ASCE by G. Lani “The SCE
functional in the time domain: insights into its formal prop-
erties”
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