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Abstract Although Kohn–Sham (KS) density functional theory (DFT) is an exact
theory, able in principle to describe any interacting N -electron system in terms of
the non-interacting Kohn–Sham model, in practice only approximate expressions
for the exchange-correlation term are available. For decades, a large number of such
approximations have been developed, proving enormously successful and accurate
for applications in many different fields. However, there still remain important sit-
uations, of both fundamental and practical interest, for which all the commonly
employed exchange-correlation functionals fail to provide an accurate description.
The paradigm of such scenarios are those systems in which the electronic correla-
tion plays the most important role. In this chapter, we show how the knowledge
on the strong-interaction limit of DFT, recently formulated within the so-called
strictly-correlated-electrons (SCE) formalism, can be imported into the Kohn–Sham
approach and used to build approximations for the exchange-correlation energy that
are able to reproduce key features of the strongly-correlated regime. We report results
of the first applications of this “KS SCE” DFT approach on quasi-one-dimensional
systems, showing its very good accuracy in the limits of both vanishing and infinite
correlation. In the last part of the chapter, we propose a generalization of the approach
for its application to more general systems.
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1 Introduction

The key idea of Kohn–Sham (KS) density functional theory (DFT) is an exact map-
ping [1] between the physical, interacting, many-electron system and a model system
of non-interacting fermions with the same density, allowing for a realistic treatment
of the electronic kinetic energy. All the complicated many-body effects are embedded
in the so-called exchange-correlation (xc) energy functional. Although, in principle,
the exact xc functional exists and is unique (and “universal”), in practice it needs to be
approximated. Both physicists and chemists have developed a large number of
approximations in the last twenty years, often targeting different systems, differ-
ent properties, and different phenomena (see in particular Chap. “Computational
Techniques for Density Functional-based Molecular Dynamics Calculations in
Plane-Wave and Localized Basis Sets” by Tzanov and Tuckermann, “Application
of (Kohn–Sham) Density Functional Theory to Real Materials” by Ghiringhelli, von
Lilienfeld and Karasiev et al.)

Despite all these efforts, there are still important cases in which state-of-the-art
KS DFT fails, which is why the quest for better xc functionals continues to be a
very active research field [2–4]. For example [3, 5], present-day KS DFT encounters
severe problems in the treatment of near-degeneracy and strong-correlation effects
(rearrangement of electrons within partially filled levels, important for describing not
only bond dissociation but also equilibrium geometries, particularly for systems with
d and f unsaturated shells, such as transition metals and actinides, Mott insulators,
and low-density nanodevices—see also Chap. “Electronic Structure Calculations
with LDA + DMFT” by Pavarini) and in the description of van der Waals long-range
interactions (relevant, for example, for biomolecules and layered materials—see
also Chap. “Linear Response Methods in Quantum Chemistry” by Watermann et
al.). While on this latter issue there has been considerable progress in the last years
through long-range energy corrections, the difficulties related to near degeneracy and
strong correlation are certainly the most important open problem of KS DFT (and of
many-body quantum physics in general). These difficulties can hamper more or less
severely (and sometimes in an unpredictable way) a given calculation, depending on
their relative importance with respect to other effects that are better captured by the
available approximate functionals.

Both in Physics and Chemistry, strong electronic correlation is often mimicked
by the approximate functionals with spin and spatial symmetry breaking, which,
however, leads to several problems. For example, for transition metal complexes
symmetry breaking occurs erratically, and is very sensitive to the functional chosen.
The consequences are wrong characterizations of the ground and excited states, and
problems in keeping the potential energy surfaces continuous.

The aim of this chapter is to introduce a novel approach to treat systems in which
the electron–electron interaction plays a prominent role within KS DFT without
using symmetry breaking, and to summarize some results. The approach is based on
the exact strong-interaction limit of DFT [6–8], described by the so-called “strictly-
correlated-electrons” (SCE) functional. The SCE functional defines a problem that
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is neither purely classical nor quantum mechanical. It can be reformulated [9] in the
language of optimal transport (or mass transportation theory), an important field of
mathematics and economics. This reformulation is also illustrated and discussed.

2 Combining the Kohn–Sham and
the Strictly-Correlated-Electrons Functional

2.1 Kohn–Sham DFT

For a system of N interacting electrons in an external potential vext(r), the total
energy can be written as a functional of the density given by [10]

E[ρ] = F[ρ] +
∫

dr vext(r) ρ(r) , (1)

where F[ρ] is the universal Hohenberg-Kohn functional, defined as the minimum of
the sum of the kinetic energy T̂ and the electron–electron repulsion V̂ee with respect
to all the fermionic wave functions Ψ that yield the density ρ(r) [11] (see also Chap.
“Levy-Lieb Principle Meets Quantum Monte Carlo” Delle Site):

F[ρ] = min
Ψ →ρ

〈Ψ |T̂ + V̂ee|Ψ 〉 . (2)

The ground-state energy of the system E0 can be obtained variationally, and it is
reached at the ground-state density ρ0(r), E0 = E[ρ = ρ0].

Unfortunately, the exact explicit form of F[ρ] is not known, and one must there-
fore build approximations for it. In Kohn–Sham DFT, this is done by introducing a
reference system of non-interacting electrons with the same density as the physical,
interacting one, and for which the kinetic energy can be exactly written as

Ts[ρ] = min
Ψ →ρ

〈Ψ |T̂ |Ψ 〉 = −1

2

N∑
i=1

〈φi |∇2|φi 〉 , (3)

where the φi are the so-called Kohn–Sham orbitals in terms of which the density is
given as ρ(r) = ∑

i |φi (r)|2, with the sum running over the occupied orbitals. The
Hohenberg-Kohn functional is then partioned as

F[ρ] ≡ Ts[ρ] + EH xc[ρ] ≡ Ts[ρ] + EH [ρ] + Exc[ρ] , (4)

where the last two terms define, respectively, the Hartree and the exchange-correlation
functionals. The functional derivatives with respect to the density yield the Hartree
and exchange-correlation potentials,

http://dx.doi.org/10.1007/978-3-319-06379-9_20
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vH[ρ](r) ≡ δEH[ρ]
δρ(r)

, vxc[ρ](r) ≡ δExc[ρ]
δρ(r)

. (5)

Since the Hartree contribution can be also calculated exactly, all the unknown in-
formation is contained in the exchange-correlation term, which must therefore be
approximated. Once this is done in a suitable way, from the combination of the
variational condition and Eqs. (3)–(5), one obtains the well-known Kohn–Sham
equations: (

−1

2
∇2 + vKS[ρ](r)

)
φi (r) = εiφi (r) , (6)

where vKS[ρ](r) ≡ vH[ρ](r)+vxc[ρ](r)+vext(r) defines the Kohn–Sham potential.
Since vKS[ρ](r) is density-dependent, Eq. (6) must be solved self-consistently.

2.2 Strictly-Correlated-Electrons Functional

Instead of discussing the commonly employed approximations for Exc[ρ] and their
success and failures (for recent reviews, see, e.g., [4, 5]; in particular in this book
see the Chap. “Application of (Kohn–Sham) Density Functional Theory to Real
Materials” by Ghiringhelli), we focus here on the use of the exact strong-interaction
limit of DFT in the KS formalism.

The HK functional of Eq. (2) and the KS functional of Eq. (3) can be seen as
the values at λ = 1 and λ = 0 of a more general functional Fλ[ρ], in which the
electron–electron interaction strength is rescaled with a real parameter λ,

Fλ[ρ] = min
Ψ →ρ

〈Ψ |T̂ + λV̂ee|Ψ 〉. (7)

A well-known exact formula for EHxc[ρ] is [12, 13]

EHxc[ρ] =
1∫

0

〈Ψλ[ρ]|Vee|Ψλ[ρ]〉 dλ ≡
1∫

0

V λ
ee[ρ] dλ, (8)

where Ψλ[ρ] is the minimizing wave function in Eq. (7). The SCE functional cor-
responds to the leading term in the λ → ∞ expansion of the integrand in Eq. (8)
[6–8, 14, 15],

V λ→∞
ee [ρ] = V SCE

ee [ρ] + O(λ−1/2). (9)

By inserting Eq. (9) into Eq. (8), we obtain a zeroth-order expansion at λ = ∞ for
EHxc[ρ],

EHxc[ρ] ≈ V SCE
ee [ρ]. (10)

http://dx.doi.org/10.1007/978-3-319-06379-9_10
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Fig. 1 Schematic illustration of the SCE reference system for a given density ρ(r) and N = 4
electrons. The empty circle represents the position of the reference particle in each case. The SCE
state is a superposition of an infinite number of these configurations, one for each value of the
position of the reference electron r. This infinite superposition keeps the density of the system
equal to ρ(r)

The functional V SCE
ee [ρ] corresponds to the minimization of the electronic interaction

alone over all wave functions yielding the given density ρ,

V SCE
ee [ρ] = min

Ψ →ρ
〈Ψ |V̂ee|Ψ 〉. (11)

Equation (10) is thus equivalent to approximate the constrained minimization over
Ψ in the HK functional of Eq. (2) with the sum of the two constrained minima
[16, 17]:

F[ρ] ≈ min
Ψ →ρ

〈Ψ |T̂ |Ψ 〉 + min
Ψ →ρ

〈Ψ |V̂ee|�〉 ≡ Ts[ρ] + V SCE
ee [ρ] . (12)

The functional V SCE
ee [ρ] was introduced by Seidl and co-workers in the SCE formu-

lation of DFT [6–8, 18]. They showed that it corresponds to the electron–electron
interaction of a fictitious system, with density ρ(r), and in which the electrons are
infinitely correlated and have zero kinetic energy.

For a more rigorous derivation, we refer the reader to [7], while here we only
aim at sketching the physics behind the SCE functional. In the SCE system, which
appears clearly as the natural counterpart of the non-interacting Kohn–Sham one,
the electrons can be seen as classical point charges located at the lattice sites of a
“floating” Wigner crystal. This means that if one electron (which is taken as reference)
is at a certain position r, due to the infinite correlation the crystal must deform itself
adjusting the positions of the other N−1 electrons in order to keep the density equal to
ρ(r) at each point of space. As schematically represented in Fig. 1, the SCE reference
system corresponds to a superposition of an infinite number of configurations (one
for each value of the reference position r).

Since the positions of the remaining N − 1 electrons become a function of the
position r of the reference one, they are represented with the so-called co-motion
functions fi (r) (i = 1, . . . , N ), with f1(r) ≡ r if we take, e.g., the electron “1” as a
reference. For a given density ρ(r), the probability of finding this electron at r will
therefore be the same as that of finding the electron “i” at fi (r), i.e.,
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ρ(fi (r))dfi (r) = ρ(r)dr . (13)

Equation (13) is one of the fundamental relations in SCE DFT, showing that, in princi-
ple, for a given density one can obtain the co-motion functions by integration. Notice
that the co-motion functions must satisfy the following cyclic group properties, in
order to ensure the indistinguishability of the electrons [7],

f1(r) ≡ r,

f2(r) ≡ f(r),

f3(r) = f(f(r)),

f4(r) = f(f(f(r)),
...

f(f(. . . f(f(r))︸ ︷︷ ︸
N times

= r. (14)

In terms of the co-motion functions the SCE functional is then equal to

V SCE
ee [ρ] =

∫
ds

ρ(s)
N

N−1∑
i=1

N∑
j=i+1

1

|fi (s) − f j (s)| = 1

2

∫
ds ρ(s)

N∑
i=2

1

|s − fi (s)| ,
(15)

just as Ts[ρ] is written in terms of the Kohn–Sham orbitals φi (r). The equivalence
of the two expressions for V SCE

ee [ρ] in Eq. (15) has been proven in Ref. [19].
Another important consequence of the properties of the SCE reference system

is that the net Coulomb repulsion felt by an electron at position r, depending on
the positions of the other particles, becomes a function of r itself. This force can
therefore be written as minus the gradient of some local one-body potential [7–9]:

− ∇vSCE[ρ](r) ≡ FCoulomb(r) =
N∑

i=2

r − fi [ρ](r)
|r − fi [ρ](r)|3 . (16)

Finally, it can be easily shown that this one-body potential satisfies in turn the exact
relation with the SCE functional [17, 18]

vSCE[ρ](r) = δV SCE
ee [ρ(r)]
δρ(r)

. (17)

Taking the functional derivatives in Eq. (12), we then see that the approximation
of Eq. (12) corresponds in modeling the Hartree and exchange-correlation potential
with vSCE[ρ](r),

vH(r) + vxc(r) ≈ vSCE(r) . (18)
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To perform practical calculations, one must proceed self-consistently in three steps:
(i) integrate Eq. (13) for a given density ρ(r) in order to obtain the co-motion func-
tions; (ii) compute the sum in the right-hand-side of Eq. (16) and calculate vSCE by
integration; (iii) use the approximation of Eq. (18) to solve the Kohn–Sham equations
(6). The total energy is then obtained from Eqs. (1) and (12). At the end of the chapter
we discuss the inclusion of corrections to the approximation made in Eq. (10). In the
next section, we illustrate this method for calculations in (quasi) one-dimensional
systems.

3 Applications to Quasi-One-Dimensional Systems

We report here some results obtained from the first applications of the zeroth-order
KS SCE approach to two different kinds of one-dimensional systems: semiconduc-
tor quantum wires with harmonic confinement and artificial hydrogen atoms with
soft-Coulomb interaction. The results are compared with those obtained with the
Configuration Interaction (CI) approach and with the local density approximation
(LDA, [20, 21]) of standard Kohn–Sham DFT. All the KS SCE and KS LDA cal-
culations have been performed within the spin-restricted framework, in which each
spatial orbital is doubly occupied.

In one dimension, the co-motion functions can be easily obtained by integrating
Eq. (13) for a given density ρ(x) [6, 9, 22] imposing boundary conditions that make
the density between two adjacent strictly-correlated positions always integrate to 1:

fi+1(x)∫

fi (x)

ρ(x ′) dx ′ = 1 , (19)

and ensuring that the fi (x) satisfy the group properties of Eq. (14) [6, 7]. One then
obtains

fi (x) =
{

N−1
e [Ne(x) + i − 1] x ≤ N−1

e (N + 1 − i)
N−1

e [Ne(x) + i − 1 − N ] x > N−1
e (N + 1 − i),

(20)

where the monotonic increasing function Ne(x) is defined as

Ne(x) =
x∫

−∞
ρ(x ′) dx ′, (21)

and N−1
e (x) is its inverse. Notice that the SCE functional is a highly non-local

density functional, containing as main ingredient the integral of the density, Ne(x)

of Eq. (21). This is very different than the commonly used approximations (LDA,
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generalized gradient approximations, etc.) that depend only locally or semi-locally
on the density.

3.1 Quantum Wires

We have considered first N electrons in a (quasi-)one-dimensional quantum wire in
which the effective electron–electron interaction wb(x) is obtained by integrating the
Coulomb repulsion on the lateral degrees of freedom [23, 25],

wb(x) =
√

π

2 b
exp

(
x2

4 b2

)
erfc

( x

2 b

)
. (22)

The parameter b in Eq. (22) fixes the thickness of the wire (here set equal to b = 0.1)
and erfc(x) is the complementary error function. The interaction wb(x) has a long-
range coulombic tail, wb(x → ∞) = 1/x , and is finite at the origin, where it has a
cusp. We also consider an harmonic confinement in the direction of motion of the
electrons, vext = ω2x2/2, where ω ≡ 4/L2 is the confinement frequency in terms of
the effective length of the wire L [23, 24]. As L increases, the interactions become
dominant and the system enters the strongly correlated regime, characterized by
charge density localization.

The left panel in Fig. 2 shows the electron densities for N = 4 electrons and
different effective confinement lengths L . One can see that when the wire has a short
effective length, here represented by L = 1, the electrons are weakly correlated and
the three approaches show a very good agreement. The density displays N/2 peaks,
given by the Friedel-like oscillations with wave number 2keff

F , where keff
F = πρ̃/2 is

the effective Fermi wavenumber. When the effective length of the wire increases, the
electronic correlation begins to play a dominant role in the system. This corresponds
to L = 15, where one can see that while the CI density starts to develop a 4-
peak structure, corresponding to an incipient charge density localization, the LDA
yields a qualitatively wrong description of the system, with a density that becomes
very delocalized along the wire. In contrast, although not being quantitatively very
accurate, the 2kF → 4kF crossover is clearly qualitatively well-captured by the KS
SCE approach. Finally, for a long wire (L = 70), the agreement between the KS SCE
and CI results improves significantly, now both displaying four very clearly marked
peaks in the density, whereas the LDA result becomes completely inaccurate, with a
density that is almost flat in the scale of the figure.

The failure of the KS LDA approach in the intermediate and strong correlation
regimes is representative of all the approximate functionals, including generalized
gradient approximations (GGA), exact-exchange and self-interaction corrections
(SIC), which never succeeded in reproducing the peak splitting in the electronic
density without introducing an artificial magnetic order [26, 27].
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Fig. 2 Left panel one-electron densities obtained with the KS SCE, CI and KS LDA approaches
for the N = 4 model quantum wire in the weak (L = 1), intermediate (L = 15) and strong
(L = 70) correlation regime. Right panel one electron densities (red) and corresponding Kohn–
Sham potentials (blue) obtained from the self-consistent KS SCE approach for model quantum
wires with different numbers of electrons N in different regimes of correlation (for clarity, only the
part x > 0 is shown)

It is known that the exact vK S must build “bumps” or barriers in order to separate
the electrons when the latter localize [28, 29]. In the right panel of the same Fig. 2
we show the self-consistent Kohn–Sham potentials and densities corresponding to
the KS SCE approach for wires with different number of electrons N and effective
confinement lengths L . One can see that the KS SCE potential displays N − 1
“bumps”, each of them corresponding to a local minimum in the density. It must
be stressed that none of the commonly employed approximations in spin-restricted
Kohn–Sham DFT is able to reproduce this key feature of the exact KS potential.
Regarding total energies, the KS SCE approach has a relative accuracy of about
2–3 % at L = 70 [17]. This accuracy increases as L increases.

Finally, we also want to point out the cheap computational cost of the KS SCE
approach in one dimension. Indeed, while the numerical effort involved in the CI
method increases exponentially with the number of particles, especially in the strong-
correlation regime that requires very large Hilbert spaces, in the KS SCE case it
becomes similar to that associated with the usual KS LDA. For example, the data in
the right panel of Fig. 2 have been obtained in a few minutes on a desktop computer.
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3.2 Model H2 Molecule

The implementation of the SCE functional in the three-dimensional (3D) space has
been achieved, so far, only for spherically symmetric systems. For general 3D geom-
etry we discuss in Sect. 5 an alternative formulation which does not need the knowl-
edge of the co-motion functions. In this section, instead, we explore the performance
of the SCE functional for 1D models in chemistry [21, 30], focussing on the breaking
of the chemical bond, which is one of the biggest open problems in spin-restricted
Kohn–Sham calculations [3, 31].

Following Refs. [21, 32], we consider a 1D model for the H2 molecule in which
the nuclei are separated by a variable distance RH−H and the electron–electron and
nuclei-electron interactions are modeled with a soft-coulomb potential given by

vee(x) = −vne(x) = 1√
1 + x2

. (23)

Figure 3 shows the total energies of the H2 molecule as a function of the interatomic
separation RH−H, obtained with the KS SCE, CI and KS LDA approaches, in a spin-
restricted formalism (that is, without localizing the spin densities on each atom). We
also show the result with restricted Hartree–Fock (HF). It can be seen that while
KS LDA shows a very good agreement with the exact result at equilibrium, a large
error is made by the KS SCE approach, which yields a much lower energy due to its
overestimation of the correlation. Yet, the equilibrium distance predicted by the KS
SCE approach is not too different from the exact one. As the interatomic distance in-
creases, however, the LDA energy rapidly deviates from the CI result, becoming too
positive, similarly to the well-known three-dimensional case. Contrarily, the KS SCE
result becomes now increasingly more accurate, reaching the exact curve in the dis-
sociation limit. Again, this feature is out of reach for all the existing approximations
in restricted Kohn–Sham DFT.

In order to improve the accuracy of the KS SCE approach at small interatomic sep-
arations, one could include corrections to the zeroth-order approximation of Eq. (4),
which we briefly discuss in the next section. As a first test, we have calculated, at a
post-functional level, the first-order correction to the KS SCE results, which we also
show in the same Fig. 3. It can be seen that this correction significantly improves the
KS SCE energy curve at small interatomic distances, although it introduces some
error on the equilibrium position. Also, it slightly shifts upwards the curve in the
dissociation region, although with a much smaller error than the one made by the
LDA. One could expect, however, that the implementation of the correction within
the self-consistent procedure should provide more accurate results.
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Fig. 3 Total energy of the
1D H2 molecule as a function
of the interatomic separation
RH−H corresponding to the
HF, CI, KS LDA and KS
SCE approaches. The result
of including a post-functional
first-order correction to the
zeroth-order KS SCE ap-
proach is also shown

4 Corrections to the Zeroth-Order KS SCE Approach

In this section we discuss how to improve the zeroth-order KS SCE approach. In
general, one can decompose F[ρ] as

F[ρ] = Ts[ρ] + V SCE
ee [ρ] + Tc[ρ] + V d

ee[ρ], (24)

where Tc[ρ] (kinetic correlation energy) is

Tc[ρ] = 〈Ψ [ρ]|T̂ |Ψ [ρ]〉 − Ts[ρ], (25)

i.e., the difference between the true kinetic energy and the Kohn–Sham one of Eq. (3),
and V d

ee[ρ] (electron–electron decorrelation energy) is

V d
ee[ρ] = 〈Ψ [ρ]|V̂ee|Ψ [ρ]〉 − V SCE

ee [ρ], (26)

i.e., the difference between the true expectation of V̂ee and the SCE value.
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4.1 Zero-Point Oscillations in the SCE System

A “first-order” approximation for Tc[ρ]+ V d
ee[ρ] can be obtained by considering the

next leading term in the λ → ∞ expansion of Eq. (9),

V λ→∞
ee [ρ] = V SCE

ee [ρ] + V ZPE
ee [ρ]√

λ
+ O(λ−p), (27)

where the acronym “ZPE” refers to “zero-point energy”, and p ≥ 5/4—see Ref. [8]
for further details. This yields

Tc[ρ] + V d
ee[ρ] ≈ 2 V ZPE

ee [ρ]. (28)

Physically, the zeroth-order term V SCE
ee [ρ] in the expansion (27) corresponds to the

interaction energy when the electrons are “frozen” in the lattice sites of the SCE
floating Wigner crystal. The ZPE term in the series takes into account small vibrations
of the electrons around their positions, and it is given by [8]

V ZPE
ee [ρ] = 1

2

∫
dr

ρ(r)
N

3N−3∑
n=1

ωn(r)
2

. (29)

The ωn(r) are the zero-point-energy vibrational frequencies around the SCE min-
imum [8], given by the eigenvalues of the Hessian matrix entering the expansion
up to second order of the potential energy of the electrons in the SCE system. We
have included the electron–electron interaction part, Eq. (29), of the ZPE at the
postfunctional level (that is, non self-consistently) to obtain the red curve in Fig. 3.

4.2 Corrections from Available approximate Functionals

It is also possible to extract approximations for Tc[ρ] + V d
ee[ρ] from available ap-

proximate functionals Eapprox
xc [ρ]. This can be done by using the scaling proper-

ties [33, 34] of DFT. By defining, for electrons in D dimensions, a scaled density
ργ (r) ≡ γ Dρ(γ r) with γ > 0, we have [34]

Tc[ρ] + V d
ee[ρ] ≈ Eapprox

xc [ρ] − lim
γ→0

1

γ
Eapprox

xc [ργ ]. (30)

This way of constructing corrections to KS SCE has been only tested by using the
LDA functional in Ref. [17] with rather disappointing results. However, much better
results should be obtained with a metaGGA functional such as the one of Ref. [35],
which can recognize one-electron regions important in the strongly-correlated limit.
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Fig. 4 The Monge problem of finding the most economical way of moving a mass distribution
into another one. Usually, the work necessary to move a unit mass from one location to another is
set equal to the distance between the two locations. The SCE functional defines a similar problem
in which, instead, the cost function is given by the Coulomb repulsion, and the goal is to transport
N − 1 times the density into itself

5 Optimal-Transport Reformulation of the SCE Functional

The exact SCE functional of Eq. (11) defines a problem that is neither properly
classical (classical systems at zero temperature do not have smooth densities) nor
quantum mechanical (there is zero kinetic energy, so that quantum effects do not
enter). Notice that this does not imply that we do not take into account quantum
effects: they enter when we use the SCE functional in the KS approach.

A very useful mathematical framework for the SCE functional is optimal transport
(or mass transportation theory), an important field of mathematics and economics
[9, 36]. Mass transportation theory dates back to 1781 when Monge [37] posed the
problem of finding the most economical way of moving soil from one area to another,
and received a boost when Kantorovich, in 1942, generalized it to what is now known
as the Kantorovich dual problem [38]. In the last twenty years optimal transport has
developed into one of the most fertile and active fields in mathematics, because
long-standing issues could be finally addressed, and also because connections with
classical problems in geometry, partial differential equations, nonlinear dynamics,
and other problems of economics have been established [39].

The original Monge-Kantorovich problem consists in finding the most economical
way to move a mass distribution into another one (according to a given definition
of the cost function, which gives the work necessary to move a unit mass from one
location to another). For example, one may wish to move books from one shelf
(“shelf 1”) to another (“shelf 2”), by minimizing the total work. The goal of solving
the Monge problem is then to find an optimal map which assigns to every book in
shelf 1 a unique final destination in shelf 2 (see Fig. 4).

In Ref. [9] it has been shown that the co-motion functions of the SCE theory are
exactly the Monge optimal maps for a mass transportation problem with cost function
given by the Coulomb repulsion. However, it is well known in mass transportation
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theory that the Monge problem is very delicate and that proving in general the
existence of the optimal maps (or co-motion functions) is extremely difficult. In
1942 Kantorovich proposed a relaxed formulation of the Monge problem, in which
the goal is now to find a transport plan, which gives the probability that, when
minimizing the total cost, a certain mass element in the first mass distribution be
transported into another one in the second mass distribution. This is evidently more
general than the Monge transportation map, which assigns a unique final destination
in the second mass distribution to every element in the first one. It turns out [9] that
the relaxed Kantorovich formulation is the appropriate one for the SCE problem.
This way, it is possible to reformulate V SCE

ee [ρ] as the maximum of the Kantorovich
dual problem,

V SCE
ee [ρ] = max

u

⎧⎨
⎩

∫
u(r)ρ(r)dr :

N∑
i=1

u(ri ) ≤
N−1∑
i=1

N∑
j>i

1

|ri − r j |

⎫⎬
⎭ ,

where u(r) = vSCE[ρ](r) + C , and C is a constant [9]. The above expression cor-
responds to a maximization under linear constraints and yields, in one shot, the
functional and its functional derivative. Since the latter is the one-body potential
given by Eq. (17), used to approximate the Hartree-exchange-correlation term in
KS SCE DFT, this reformulation allows one to obtain directly the potential without
having to previously calculate the co-motion functions via Eq. (13).

Although the number of linear constraints is infinite, this formulation may indeed
lead to approximate, but accurate, approaches to the construction of V SCE

ee [ρ] and
vSCE[ρ](r), as very recently shown by the first pilot implementation of Mendl and
Lin [40].

6 Conclusions and Perspectives

The knowledge on the strong-interaction limit of density functional theory can be
used to construct approximations for the exchange-correlation energy and potential
of Kohn–Sham DFT. Even at the lowest-order of approximation, this approach yields
good results for both weakly- and strongly-interacting systems, without the need of
introducing any artificial symmetry breaking. In particular, it is able to reproduce
quantitatively key features of the strongly-correlated regime out of the reach of all the
commonly employed approximations, such as the presence of “bumps” in the Kohn–
Sham potential, responsible for, e.g., charge density localization in semiconductor
nanostructures. At the same time, at least in one dimension, the computational cost
of this approach is comparable to the one of standard KS LDA, way much cheaper
than demanding wave function methods that are often the only route to treat strong
correlation. This allows to treat systems with much larger number of particles and in
arbitrary regimes of correlation.
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In this chapter we have reported the first pilot applications of this approach on
two simple one-dimensional systems, namely semiconductor quantum wires and a
model for the hydrogen molecule. We have also discussed the inclusion of corrections
in order to further improve the results obtained with the zeroth-order approach.
Whereas only some minor modifications are needed in order to apply the formalism
to systems with spherical symmetry, a generalization to arbitrary systems seems to
be a much more complicated task. In this regard, it has recently been shown that a
reformulation of the approach in terms of optimal transport theory, a well established
field of mathematics, could be a successful route towards this goal.
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