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Chapter 1

Introduction

Quantum mechanics plays a significant role in the accurate description of atomic
matter. It adequately captures the delicate interplay of electronic quantum effects and
particle-particle interactions, decisive for the properties of compounds from atomic
scale up to advanced materials. Algorithmic implementations of the many-body Schrö-
dinger equation face the problem that an accurate ground state computation is limited
by the overwhelming computational cost inherent to such implementations, and an
accurate treatment can only be achieved for systems with electron numbers in the
order of hundreds.

A computationally efficient approach that allows for an accurate modeling of
compounds with sizeable electron numbers is provided by density functional theory
(DFT). A proof that an exact DFT formulation of the electronic structure problem exists
was given by Hohenberg and Kohn [1], and present-day approximate implementations
have demonstrated their applicability to systems with as much as millions of atoms [2].
Approximations are necessary because of the commonly employed Kohn-Sham (KS)
reference system [3] in which non-interacting electrons are used to model the physical
system, and all the complicated many-body effects are contained in the effective
one-body KS potential. Closed form expressions for the exact potential do not lead to
efficient algorithmic solutions, but a huge amount of approximations exists covering
many properties of interest.

Strongly correlated systems are notoriously difficult to describe by means of the
non-interacting reference system. Drastic corrections in the effective KS potential are
needed to accurately account for the dominance of electronic correlation. Traditional
approximations do not capture the subtle physics of strong electronic correlation, and
issues, e.g., in the correct description of bond-breaking processes and the prediction
of conductance properties of Mott insulators arise. Though some remedy is found in
the extension of DFT to spin-densities, with spin-density functional theory itself being
in principle exact [4], its approximate realization still leads to a false characterization
of, e.g., magnetic properties.

In this thesis we follow a rigorous approach to construct the required corrections
in the KS potential for the case of strong correlation. After a brief review on the
electronic structure problem and its treatment by wavefunction and density matrix
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2 Introduction

methods in chapter 2, DFT will be considered in more detail. Traditional functional
approximations for the exchange and correlation contributions are discussed, along
with strategies for the development of improved approximations. This strategies
emerge from the adiabatic connection of DFT, which provides an exact expression for
the exchange-correlation energy in terms of the coupling-constant integrand Wλ[ρ].
Approximate functionals are obtained from interaction-strength interpolations (ISIs)
of the coupling-constant integrand Wλ[ρ], which can incorporate the KS system as
reference.

Another useful reference system for the ISI is the one of strictly correlated electrons
(SCE), which is the strong-interaction analogue of the KS non-interacting reference
system. We will present the SCE formulation of the physical problem in chapter 3.
In this reference system the electronic interaction dominates over the kinetic energy,
and a description of the electrons as point charges is suitable as long as the electronic
positions are chosen according to well defined equilibrium conditions that account
for the quantum mechanical density. The electrostatic energy of the electrons is then
readily computed and can be used as foundation for a new generation of functional
approximations. Models for the strong-interaction limit will be discussed in the same
chapter, in particular the point-charge plus continuum (PC) model.

A continuation of the ISI idea is introduced in chapter 4. We first review the already
available ISI approximations targeting the coupling-constant integrand Wλ[ρ] of the
adiabatic connection as whole, thus globally. We discuss then the size-consistency
issues of these functionals, which arise because of the non-linear interpolation models
that were employed in their construction, and we devise a local strategy to overcome
this problems. The main attention of our work is devoted to the study of the quantities
that serve as basic input for improved functional approximations, the local energy
densities. Next to specifying the energy densities of the non-interacting and physical
systems, the energy density of the strong-interaction limit is derived, and implications
for local ISI models are drawn by evaluating energy densities in different correlation
regimes for atoms and quantum dots (Hooke’s atoms). Additionally, the local PC
model is compared to the SCE reference for an assessment. We also analyze the local
version of the Lieb-Oxford bound, which is a condition widely used in the construction
of approximate exchange-correlation functionals.

The KS-SCE method that uses a simple linear model for the coupling-constant inte-
grand Wλ[ρ] is considered in chapter 5. As was demonstrated in ref. [5], this method
is able to capture strong-correlation effects within the single-determinantal KS-DFT
without symmetry breaking, thus in a spin-restricted formalism. Here we will extend
the studies of Malet et al. [5] and give a first assessment on the quantitative accuracy
of the method. Applications to model quantum wires, where strong correlation plays a
significant role, will be presented, and first conclusions on the relevance of the KS-SCE
method for chemistry will be drawn from applications to one-dimensional models for
atoms, ions and the H2 bond dissociation. For an improved accuracy of the KS-SCE
method in the intermediate-correlation regime curved ISI models are considered at a
post-functional level.

In chapter 6 we demonstrate that the KS-SCE approximation correctly exhibits the
derivative discontinuity, which is a crucial feature of the exact exchange-correlation
functional derived by rigorous arguments, but is missed in traditional functional



Introduction 3

approximations. The SCE formalism is extended to fractional particle numbers, and
strongly correlated one-dimensional model quantum wires will be studied as well as
the three-dimensional low-density Hooke’s atom. A correct resemblance of the exact
eigenvalue step structure is observed upon continuous variation of the particle number,
which is a clear signature of the derivative discontinuity in the SCE functional.

Results for atomic systems will be reported in chapter 7. Though not very ex-
tensive – only the Hydrogen anion is considered – the presented analysis serves as
first quantitative benchmark for the accuracy of the KS-SCE method in chemical
systems, and addresses simultaneously the challenging problem of anion binding
in DFT, as traditional functional approximations usually fail to bind the additional
electron. Further attention will be payed to corrected SCE functionals that improve
the significant underestimation of the total energy of the KS-SCE method in the
intermediate-correlation regime. In the corrections the SCE functional is comple-
mented by a local density approximation, and, because of the formal simplicity of the
correction, a self-consistent solution of the KS equations is still feasible. To investigate
the challenging case of anion binding in approximate DFT in more detail, we examine
the phase transition from a bound to an unbound two-electron system by allowing for
non-integer nuclear charges. A critical value Zcrit < 1 is found, which is estimated by
very precise wavefunction calculations at Zcrit ≈ 0.911029, and can be compared to
predictions of functional approximations.

Chapter 8 summarizes our findings and gives an outlook.





Chapter 2

Electronic Structure Problem

2.1 Basic concepts

2.1.1 Quantum mechanical description of atomic matter

A system of N electrons with velocities well below the speed of light, i.e. non-
relativistic, evolving in the electric field of resting nuclei is accurately described by
solutions to the stationary Schrödinger equation

Ĥ Φ = E Φ (2.1)

that give the energies E and electronic wavefunctions Φ for the ground and excited
states of a given system. The Hamiltonian1 is set by the position and charge of the M
nuclei and the number of electrons

Ĥ = T̂ + V̂ee + V̂en

= −
N∑
i

1

2
∇2
i +

1

2

N∑
j 6=i

1

|ri − rj |
−
M,N∑
a,i

Za
|Ra − ri|

(2.2)

Because the nuclear positions R are taken to be fixed (Born-Oppenheimer approx-
imation) the electronic wavefunction is a variable of the electronic positions alone
Φ(r1...rN ). To account for the fermionic nature of the electrons an additional spin
degree of freedom is introduced in the electronic coordinate

Φ(r1 . . . rN )→ Φ(r1σ1 . . . rNσN ) ≡ Φ(x1 . . .xN ) (2.3)

such that the wavefunction becomes antisymmetric under coordinate interchange of
particles

Φ(. . .xi . . .xj . . . ) = −Φ(. . .xj . . .xi . . . ) (2.4)

1In Hartree atomic units (a.u.).
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6 Electronic structure problem

2.1.2 Approximate wavefunction methods

In practice, solutions to the Schrödinger equation for many-electron systems (N ≥ 2)
with Hamiltonian (2.2) can only be found approximately. A space of trial wavefunc-
tions is scanned to find an approximate ground state wavefunction Φ̃0 and energy
E0[Φ̃], by minimization of the total energy expression

E[Φ̃] ≡ 〈Φ̃|Ĥ|Φ̃〉
〈Φ̃|Φ̃〉

(2.5)

and an upper bound to the true ground state energy E0[Φ] is obtained

E0[Φ] ≤ E0[Φ̃] = min
Φ̃

〈Φ̃|Ĥ|Φ̃〉
〈Φ̃|Φ̃〉

(2.6)

Trial wavefunctions can be as simple as antisymmetrized products of one-particle
wavefunctions (Slater determinant)

Ψ (x1,x2 . . .xN ) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣

ϕ1 (x1) ϕ2 (x1) . . . ϕN (x1)

ϕ1 (x2) ϕ2 (x2) . . . ϕN (x2)
...

...
. . .

...

ϕ1 (xN ) ϕ2 (xN ) . . . ϕN (xN )

∣∣∣∣∣∣∣∣∣∣∣
(2.7)

with the orbitals ϕi(x) ≡ ϕi(r)χi(σ) chosen according to the Aufbau principle from
the self-consistent solution of the effective one-particle Hartree-Fock (HF) equations[

−1

2
∇2 + vH(r) + v̂x(x) + vext(r)

]
ϕi(x) = εiϕi(x) (2.8)

In this equation the effective potential acting on an electron is the sum of the Hartree
potential vH(r) =

∫
dr′ ρ(r

′)
|r−r′| , the HF exchange potential defined by its action on

an orbital v̂x(x)ϕi(x) = −∑N
j δ

σ
ij

∫
dr′

ϕ∗i (r′)ϕj(r
′)

|r−r′| ϕj(r), and the Coulombic external

potential exerted by the nuclei vext(r) = −∑M
a

Za
|Ra−r| .

The Slater determinant that minimizes 〈Ψ|Ĥ|Ψ〉 yields the HF energy EHF , which
is composed of the kinetic energy T , Hartree energy U , exchange energy Ex and
electron-nuclear attraction energy Een2

EHF ≡ T + U + Ex + Een

=

N∑
i

[
− 1

2

∫
drϕ∗i (r)∇2ϕi(r) +

1

2

∫
drϕ∗i (r)vH(r)ϕi(r)

+

∫
dxϕ∗i (r, σ)v̂x(r, σ)ϕi(r, σ) +

∫
drϕ∗i (r)vext(r)ϕi(r)

] (2.9)

2
∫
dx indicates the integration over spin- and spatial coordinates

∑
σ

∫
dr .
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A Slater determinant is the formal solution to a Hamiltonian with non-interacting elec-
trons. If employed together with the interacting Hamiltonian (2.2), the approximate
energy will be in error by the correlation energy, which is defined as the difference of
the HF energy with the true ground state energy

Ec ≡ E0[Φ]− EHF [Ψ] (2.10)

Several methods have been developed to capture correlation by the use of trial
wavefunctions of increasing complexity. We give an overview with some references to
recent reviews on the most relevant methods. For an extensive review see ref. [6].

Many-body perturbation theory approaches [7, 8] build up on a perturbation
expansion of the exact energy in terms of the ground state of some trial wavefunction
and higher order corrections to it. In the configuration-interaction method [9, 10]
the true wavefunction is written as a linear combination of the HF ground state
Slater determinant and excited determinants, which are obtained from the ground
state after one or more occupied HF orbitals have been replaced with unoccupied
ones. It can be formally shown that, if all possible excitations are taken into account,
the true ground state energy can be reached by variation of the coefficients in the
linear combination. This approach, however, is practically cumbersome and the
space of excited determinants is truncated. Improved convergence with less excited
determinants is achieved by the multi-configuration self-consistent field method [10],
where the HF orbitals are optimized along with the coefficients of the configuration-
interaction wavefunction. Multi-reference methods [10, 11] are given if next to
the ground state Slater determinant as reference for the construction of the excited
determinants other references are considered, e.g. energetically nearly degenerate
states to the ground state.

Because the space of excited determinants in the linear combination of the three
former methods is truncated, artifacts arise in the approximate solutions, such as
the violation of size extensivity [7]. The coupled-cluster methods [12, 13] avoid
this problem by expressing the linear combination coefficients of multiple excited
determinants in terms of coefficients of less excited determinants. To the methods
computational disadvantage a non-variational scheme is obtained.

Explicitly correlated methods [14, 15] differ from the orbital based methods in
introducing inter-electronic distances as variables for the electronic wavefunction.
Very accurate ground state estimates can be obtained for the cost of solving computa-
tionally demanding integrals. Quantum Monte Carlo methods build up on a stochastic
sampling of the many-body Schrödinger equation and many different flavors of this
method exist, each with their own pros and cons. For a review the reader is referred
to ref. [16]. Another approach worth mentioning is the density matrix renormalization
group method [17,18].

2.1.3 Energy functionals for density matrices

The energy of a given system can also be written in terms of the two-body reduced
density matrix (2-RDM)

γ2(x1x2,x
′
1x
′
2) = N(N − 1)

∫
dx3 . . . dxN Φ∗(x1 . . .xN )Φ(x1 . . .xN ) (2.11)
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This is possible because there are at most two-body operators in the Hamiltonian
(2.2), and the energy reads

E[γ2] = −1

2

∫
dx∇2

x′γ1(x,x′)
∣∣
x=x′

+
1

2

∫∫
dx1dx2

P2(x1x2)

|r1 − r2|
+

∫
dr ρ(r)vext(r)

(2.12)

where the pair density P2, the one-body reduced density matrix (1-RDM) γ1, and the
electronic density ρ were used, which are related to the 2-RDM

P2(x1x2) = γ2(x1x2,x
′
1x
′
2)
∣∣
x1=x′1,x2=x′2

γ1(x,x′) =
1

N − 1

∫
dx2 γ2(xx2,x

′x′2)
∣∣
x2=x′2

ρ(r) =
∑
σ

γ1(x,x′)
∣∣
x=x′

(2.13)

With the energy expression as functional of the 2-RDM, the N -variable depen-
dent wavefunction can be avoided in the energy minimization (2.5). Complications
however arise for the requirement of the minimizing 2-RDM to stem from an N -
electron fermionic wavefunction (N -representability [19]). Though the conditions
on the 2-RDM for N -representability are known [20], their enforcement results in
computationally demanding approaches relying on semidefinite programming tech-
niques [21,22]. As resort methods are developed that avoid the explicit confinement
of the 2-RDM by parametrization [23], e.g., to post-HF wavefunctions [24], or impose
only a subset of the N -representability conditions [25–27].

Other alternatives to the wavefunction methods avoid the 2-RDM and build up
on the pair density, the 1-RDM, or the electronic density, at the price of introducing
an unknown energy functional that needs to be determined. E.g., in pair-density
functional theory [28] the N -representability conditions for the pair-density are
known [29,30] but essentially impossible to apply, with the additional complication of
determining the kinetic energy functional in terms of the pair density [31,32]. For one-
body reduced density matrix functional theory the N -representability conditions on
the 1-RDM are known [33] and readily enforced, and approximate energy functionals
for the electronic interaction were applied to small molecular systems [34–36] and
solids [37].

Finally, in density functional theory (DFT) the N -representability conditions on
the electronic density are easily imposed and vast amounts of approximate energy
functionals have been developed. An overview about this method will be given in the
next section. A recent review can be found in ref. [38].

2.2 Density functional theory

2.2.1 Formulation of Hohenberg and Kohn

Hohenberg and Kohn have proven that for non-degenerate ground states3 there is a
unique mapping between a local external potential V̂ =

∑N
i v(ri) and its correspond-

3For a straight forward extension to degenerate ground states see, e.g., ref. [39].
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ing ground state density. Consequently the density can be used to determine the
external potential from which it originates. From the external potential the ground
state wavefunction can be calculated, and it shows that all properties of a given system
can be found by knowledge on its density alone.

This is in particular true for the energy of a system with given density

E[ρ] = F [ρ] +

∫
dr ρ(r)v(r) (2.14)

where we have separated the energy contributions of the local external potential from
the kinetic and electronic interaction contributions. As the treatment of the kinetic
energy and electronic repulsion will be the same for any system, the functional form
will be independent of the external potential, and F [ρ] is also called the universal
functional.

The unique mapping of ground state density and external potential can be estab-
lished for any electronic interaction. If the electronic interaction is the physical one,
the external potential will be just the Coulombic field created by the nuclei. In Levy’s
constrained search formulation [40] the universal functional then writes

F [ρ] = min
Φ→ρ
〈Φ|T̂ + V̂ee|Φ〉 (2.15)

where the minimization is carried out w.r.t. all fermionic wave functions Φ that yield
a given density ρ(r) and the constraint Φ→ ρ will be realized by suitable choice of
the external potential, which therefore can be written as functional of the density
v(r)→ v[ρ](r).

Because of the variational properties of the functional (2.14) the ground state
density results from the solution of the Euler-Lagrange equation

δE[ρ]

δρ(r)
=
δF [ρ]

δρ(r)
+ v[ρ](r) = µ (2.16)

where the Lagrange multiplier µ enters to assure the proper density normalization∫
drρ(r) = N .

2.2.2 Kohn-Sham non-interacting reference system

Kohn and Sham [3] were the first to consider the non-interacting reference system for
the calculation of the physical ground state density. They define the functional Ts[ρ] as
the minimum kinetic energy of non-interacting electrons, whereby the wavefunction
is constrained to yield a given density

Ts[ρ] ≡ min
Ψ→ρ
〈Ψ|T̂ |Ψ〉 (2.17)

Here we have considered that, for the case of a non-degenerate ground state, the
minimizing wavefunction becomes a Slater determinant Φ→ Ψ.

According to the HK theorems there exists a unique local potential that will account
for the density constraint Ψ → ρ. This potential will be the effective Kohn-Sham
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(KS) potential vs[ρ](r) that enters the Euler-Lagrange equation for Ts as Lagrange
multiplier

δE[ρ]

δρ(r)
=
δTs[ρ]

δρ(r)
+ vs[ρ](r) = µ (2.18)

It consists of the external potential vext, and a complementary contribution to model
the electronic interactions of the physical system in the non-interacting reference
system

vs(r) ≡ vext(r) + vHxc[ρ](r) ≡ vext(r) + vH [ρ](r) + vxc[ρ](r) (2.19)

The electronic interaction part is commonly referred to as Hartree-exchange-correla-
tion. The Hartree-exchange-correlation energy can be defined as remainder of the
universal functional F [ρ] after subtraction of Ts[ρ]

F [ρ]− Ts[ρ] ≡ EHxc[ρ] ≡ U [ρ] + Exc[ρ] (2.20)

and the exchange-correlation energy will consist of kinetic and interaction contribu-
tions

Exc[ρ] = 〈Φ|T̂ |Φ〉 − 〈Ψ|T̂ |Ψ〉+ 〈Φ|V̂ee|Φ〉 − U [ρ] (2.21)

With the definition of the universal functional according to (2.20) the physical
ground state energy will be obtained after the electron-nuclei attraction energy is
added

E[ρ] = Ts[ρ] + EHxc[ρ] +

∫
dr ρ(r)vext(r) (2.22)

and the functional derivative of EHxc[ρ] will be related to the potential vHxc[ρ](r) as
can be seen from (2.16)

δEHxc[ρ]

δρ(r)
= vHxc[ρ](r) (2.23)

Because of the Slater determinant that minimizes the non-interacting kinetic
energy functional Ts[ρ] (2.17), the N -representability conditions on the density are
fulfilled by construction [41]. The electronic density is then simply given by the
orbitals

ρ(r) =

occ∑
i

|ϕi(r)|2 (2.24)

where the orbitals are the solutions to the single-particle KS equations[
−1

2
∇2 + vs[ρ](r)

]
ϕi(r) = εiϕi(r) (2.25)

which follow from the total energy (2.22) if variations w.r.t. the orbitals are under-
taken with the constraint of ortho-normalized orbitals. As the density depends on the
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solutions of the KS equations via the orbitals, and also defines the KS potential that
enters the KS equations, solutions to the KS equations are found in a self-consistent
procedure.

KS-DFT is in principle an exact theory, mapping the ground state energy and density
of an interacting many-electron system into a problem of non-interacting electrons
moving in the effective KS potential. In practice, KS-DFT relies on approximations for
the exchange-correlation functional.

2.2.3 Adiabatic connection

An exact expression for the KS exchange-correlation functional is provided by the
adiabatic connection framework of DFT [42–44]. In the linear adiabatic connection
an interaction-strength scaled functional is introduced

Fλ[ρ] = min
Φ→ρ
〈Φ|T̂ + λV̂ee|Φ〉 ∀ λ ∈ R (2.26)

that yields the universal functional F [ρ] (2.15) at physical interaction strength λ = 1,
and the KS non-interacting functional Ts[ρ] (2.17) in the weak-interaction limit λ = 0.
For the strong-interaction limit λ→∞ a reference system of strictly correlated electrons
(SCE) can be established, which will be introduced in the next chapter of this thesis.

As denoted in the general functional (2.26), the minimizing wavefunction Φλ[ρ] is
constrained at all coupling strengths to the same density, typically the physical one.
With such Φλ[ρ] for all systems that connect the non-interacting with the physical
0 ≤ λ ≤ 1, the exact Hartree-exchange-correlation energy is obtained from the
coupling-constant integration

EHxc[ρ] =

∫ 1

0

dλ 〈Φλ[ρ]|V̂ee|Φλ[ρ]〉 =

∫ 1

0

dλV λee[ρ] (2.27)

The exchange-correlation energy alone is given from the indirect part of the elec-
trostatic interaction energy Wλ[ρ], because the Hartree energy is the same for every
λ

Exc[ρ] =

∫ 1

0

dλ 〈Φλ[ρ]|V̂ee|Φλ[ρ]〉 − U [ρ] =

∫ 1

0

dλWλ[ρ] (2.28)

A schematic illustration of the above expression is given in figure 2.1.
Approximations to the coupling-strength integrand Wλ[ρ] can be attempted for

accurate, yet efficient, exchange-correlation functional approximations. A review on
approximations that follow this strategy will be given in section 2.2.7. The functional
approximations that are presented in this work will also be constructed by the use
of the adiabatic connection. Other functional approximations, which do not use
the coupling-strength integration explicitly, will be discussed in the next sections.
Functional approximations that build up on the adiabatic connection can also be
validated, if compared to reference calculations with wavefunction methods [45,46].

One can relate the rigorous energy expression in terms of the density matrices
(2.12) to the exchange-correlation energy Exc[ρ]. Therefore define the exchange-
correlation hole from the density matrices for all auxiliary systems connecting the
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Figure 2.1: Schematic representation of the coupling-constant integration Exc[ρ] =∫ 1

0
dλWλ[ρ] for a given density. The exact-exchange energy Ex[ρ] = 〈Ψ[ρ]|V̂ee|Ψ[ρ]〉−

U [ρ] with the KS orbitals is recovered in the limit λ = 0, and W∞[ρ] = V SCEee [ρ]−U [ρ]
can be obtained from the strong-interacting reference system λ→∞, cf. chapter 3.1.

non-interacting reference system with the physical system

hλxc(r1, r2) =
∑
σ1σ2

Pλ2 (x1x2)

ρ(r1)
− ρ(r2) (2.29)

Averaging the hole over all auxiliary systems

h̄xc(r1, r2) =

∫ 1

0

dλhλxc(r1, r2) (2.30)

yields the exchange-correlation energy in terms of the averaged exchange-correlation
hole

Exc[ρ] =
1

2

∫∫
dr1dr2

ρ(r1)h̄xc(r1, r2)

|r1 − r2|
(2.31)

The exchange-correlation hole allows for a transparent physical interpretation of the
exchange and correlation corrections. Next to the self-interaction correction, which
has to be subtracted from the Hartree energy and potential, the Pauli repulsion effects
of spin-like electrons are taken into account by creating the exchange hole hλx around
a reference electron. Coulomb repulsion effects for opposite-spin electrons beyond the
Hartree mean-field description are embodied in the correlation hole hλc . Averaging
over the holes of all auxiliary systems gives finally rise to the correlation correction to
the non-interacting kinetic energy.
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2.2.4 Traditional exchange-correlation approximations

We give an overview of the most established approximate exchange-correlation func-
tionals that do not use the coupling-constant integration explicitly in their construc-
tion.

The computationally simplest approximation is given by the local density approxi-
mation (LDA) [3]. In the LDA Exc[ρ] is rewritten as integral in space

Exc[ρ] =

∫
dr ρ(r)εxc[ρ](r) (2.32)

with εxc[ρ](r) a local exchange-correlation energy per particle (energy density) as
functional of the overall density. εxc[ρ](r) is not unique but subject to gauge freedom4.
Further on, the functional dependence of εxc[ρ](r) is replaced by the dependence on
the local density alone

εxc[ρ](r) ≈ εLDAxc (ρ(r)) (2.33)

An approximate evaluation of the energy density for some, in general inhomogeneous,
system is then accomplished by estimating it from the homogeneous electron gas
(HEG) of density ρ0 = ρ(r)

εLDAxc (ρ(r)) ≈ εHEGxc (ρ0)|ρ0=ρ(r) (2.34)

for which analytic expressions can be found [4,47–50]. The LDA is very successful in
the treatment of extended systems as encountered in solid state physics. In chemistry,
however, its success is limited as in the finite systems treated here, inhomogeneities
in the electronic density prevail.

To account for inhomogeneities, the LDA is refined by recourse to the slowly
varying electron gas (SVEG). Analytic expressions for the SVEG energy density are
obtained from perturbation expansions for the HEG, and as a result the energy density
becomes additionally a function of the local density gradient ∇ρ(r) for perturbation
expansions carried out to second order. The gradient expansion approximation (GEA)
εGEAxc (ρ(r),∇ρ(r)) [51] follows, but an improvement over the LDA is not observed.
This can be attributed to the averaged exchange-correlation hole h̄xc. Carrying out a
gradient expansion for the exact averaged exchange-correlation hole [52–55] shows
that by the GEA an improved sampling of the short range part of the spherically
averaged hole h̄xc(r, r + |u|), |u| → 0 is achieved, but the long range part |u| → ∞ is
considerably worsened. As a consequence the sum rule of the exchange-correlation
hole is violated

∫
dr h̄xc(r) 6= 1. Recently, it has also been realized, that a different

gradient expansion applies in classically forbidden regions [56]. Hence, corrections
in the long range domain of the energy density are introduced, and the generalized
gradient approximation (GGA) is obtained εGGAxc (ρ(r),∇ρ(r)) [51,53,57–63] allowing
for an accurate description of a wide variety of chemical systems.

Further accounting of inhomogeneities is achieved by an extension of the SVEG
perturbation expansion to fourth order, and a dependence on the local Laplacian of

4Adding any functional of the density that integrates to zero will change the energy density locally, but
not the integrated value.
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the density ∇2ρ(r) arises [64,65]. However, more significant corrections are required
for the self-interaction error present in the functional approximations from above.
Such error arises, e.g., for one-electron densities where Exc[ρ] is required to yield
−U [ρ], as for one-electron systems the electronic interaction contributions should
vanish and the kinetic energy is exactly described by Ts – a condition not satisfied
by the already presented functionals. One-electron regions in electronic systems can
be identified by the use of the local kinetic energy density τ(r) =

∑
i |∇ϕi(r)|2 [66].

Functionals depending on the density Laplacian and/or the kinetic energy density are
categorized as metaGGA functionals εmetaGGAxc (ρ(r),∇ρ(r),∇2ρ(r), τ(r)) [67–73].

To complete this brief overview about traditional density functional approxima-
tions, we mention that the non-local HF exchange can be transformed into a local
potential via the optimized effective potential method [74–77], yielding the well
defined orbital-dependent exact exchange functional [78]. A self-interaction free
functional is obtained and solely the correlation components remain to be determined.
Correlation in the exact exchange functional can be included via the random phase
approximation with the additional complication that unoccupied orbitals have to
be taken into account [79,80]. If HF exchange is combined with GGA or metaGGA
exchange and correlation, hybrid functionals are obtained [81–83]. Double hybrids
result from additional inclusion of correlation of second-order perturbation theory
(and thereby again by inclusion of unoccupied orbitals) [84–87]. As in this hybrids the
non-local HF exchange is usually not transformed into a local potential, a generalized
KS framework to non-local potentials is invoked [3].

Though successful in very many cases, traditional density functional approxi-
mations (DFAs) still have severe deficiencies that hamper their overall usefulness
[38, 88, 89]. Some problematic examples will be given in section 2.2.6. A resolu-
tion, at least in some respects, can be found by extending the density functionals to
spin-densities.

2.2.5 Spin-density functional theory

The universal functional F [ρ] can also be defined by the use of spin densities [4,90],
and, e.g., for the KS reference system one can write

F [ρ] = Ts[ρ↑, ρ↓] + Exc[ρ↑, ρ↓] + U [ρ] (2.35)

that in its exact form should clearly yield the same ground state as the spin-indepen-
dent KS functional (2.22)

Ts[ρ↑, ρ↓] + Exc[ρ↑, ρ↓] = Ts[ρ] + Exc[ρ] (2.36)

In the case of approximations the increased variational freedom in the energy mini-
mization can lead to improved ground state estimates.

Practical implementations solve the unrestricted KS equations for the KS spin
orbitals [

−1

2
∇2 + vs[ρ↑, ρ↓](r, σ)

]
ϕi(r, σ) = εi,σϕi(r, σ) (2.37)
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with the spin-dependent KS potential

vs[ρ↑, ρ↓](r, σ) = vext(r, σ) + vH [ρ](r) + vxc[ρ↑, ρ↓](r, σ) (2.38)

and the exchange-correlation potential obtained from the exchange-correlation energy
by the derivative w.r.t. the spin density

δExc[ρ↑, ρ↓]

δρσ(r)
= vxc[ρ↑, ρ↓](r, σ) (2.39)

The overall density results from the spin densities, that are themselves related to the
KS spin orbitals

ρ(r) = ρ↑(r) + ρ↓(r)

=

N↑∑
i

|ϕi(r, ↑)|2 +

N↓∑
i

|ϕi(r, ↓)|2
(2.40)

To benefit from the increased variational freedom in the approximate case, the
approximations have to be extended to spin-densities. Therefore, e.g., in the LDA
exchange-correlation functional (2.34) a local approximation can be evaluated from
the homogeneous spin-polarized electron gas and the local spin-density approximation
(LSDA) is obtained

εLSDAxc (ρ↑(r), ρ↓(r)) ≈ εHEGxc (ρ0↑, ρ0↓)
∣∣∣ρ0↑=ρ↑(r)
ρ0↓=ρ↓(r)

(2.41)

Spin-polarized counterparts of the higher level approximations (GGA, metaGGA) exist
as well, and commonly in practice the unrestricted KS equations are solved instead of
the restricted ones.

Note that in the external potential vext(r, σ) of (2.38) a magnetic field can be
included, allowing for a variational determination of magnetic properties [91,92] or
the inclusion of relativistic effects [44].

2.2.6 Deficiencies of density functional approximations

As mentioned in section 2.2.4, the intuitive, yet simple, LDA successfully established
DFT methods in solid states physics, yielding, e.g., reasonable lattice constants and
surface energies for extended systems. When more confined system are considered
and inhomogeneities in the electronic density become relevant the LDA falls short,
leading to wrong predictions of adsorption energies of molecules on surfaces or
overestimation of atomization energies of molecules. The GGA corrections give some
improvement, though it has been found that improved adsorption energies come at
the price of worse surface energies and vice versa. Similar tendencies are found for
atomization energies and equilibrium bond distances, where atomization energies are
improved but equilibrium bond distances are underestimated. MetaGGA functionals
perform equally well for the mentioned properties, but still show qualitative errors,
e.g., for the adsorption sites of CO on Cu, Rh and Pt (111) surfaces [93].
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Even more drastic failures arise in the determination of the fundamental con-
ductance gap (being the difference between ionization energy and electron affinity).
Though it is well understood that the KS gap between the highest occupied (HOMO)
and lowest unoccupied (LUMO) eigenvalues can only be taken as an estimate for the
optical gap, the fundamental gap can be accessed within KS-DFT by considering a
molecule or large cluster of a material and adding or subtracting electrons to/from it
respectively. For the exchange-correlation potential it is then required to be shifted
by a constant in the bulk region with otherwise unchanged shape, and the constant
shift has to vanish when the bulk region is left [94]. Such a behavior is not covered
by traditional functionals, having consequences for the charge transport description
in insulators, semiconductor nanostructures and molecular wires. Long-range charge
transfer excitations in molecules or dissociating heterogeneous chemical bonds are
also notoriously difficult to describe. The constant shift is commonly refereed to as
derivative discontinuity and will be considered in more detail in chapter 6 of this
thesis.

Some remedy is provided in the generalized KS framework when hybrid functionals
with some portion of HF exchange are used. E.g., the B3LYP functional [49,61,82,
95], being the most popular hybrid functional in the chemistry community, gives
striking atomization energies close to chemical accuracy (≈ 4 kcal mol−1) and good
equilibrium geometries, but still lacks the derivative discontinuity. Nevertheless,
as due to the inclusion of HF exchange the HOMO-LUMO gap is opened5, some
improvement might be expected. Though care has to be taken, because a clear
distinction between optical and fundamental gap is not possible anymore. Another
drawback of the B3LYP functional is its limited scope to molecular systems, as the
empirical parameters that define this functionals derive by fitting to a molecular
benchmark set and are not transferable to solids. In solids the HSE functional [96] is
employed but is unsatisfactory for the adsorption properties as discussed in the first
paragraph of this section.

The above considerations show that the DFAs are not universally applicable, but
often a specific functional will be appropriate for the property of interest. Strongly
correlated systems, in which a degenerate or nearly degenerate ground state occurs,
are overall difficult to deal with for any DFA within the single-determinant KS scheme.
This is given, e.g., in the case of Mott insulators, which exhibit a vanishing optical
gap but finite conductance gap, and issues in the simulation of charge transport
arise. Homogeneous bond stretching in such simple molecules as H2 poses another
issue that can be partially dealt with by spin-DFT. However, the usual (semi-)local
approximations lead to a wrong characterization of the magnetic properties as the
unphysical broken spin-symmetry solution is favored. Rearrangement of electrons
in unsaturated d and f shells, as present in transition metals and Actinides, poses
another challenge for present DFAs. Functionals for strongly correlated systems in
KS-DFT are yet to be devised. Some attempts towards such improved functionals will
be presented in this thesis.

5In HF theory in contrast to KS theory, the HOMO-LUMO gap corresponds to the fundamental gap.
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2.2.7 Approximate functionals from the adiabatic connection

The coupling-constant integration (2.28) serves as excellent starting point for the
systematic development of efficient functional approximations when the coupling
constant integrand Wλ[ρ] is targeted. We review the functionals that emerge along
the lines of the adiabatic connection.

Pioneering attempts towards approximateWλ[ρ] build up on the KS non-interacting
reference system, and some traditional density functional approximation for Fλ at
some intermediate interaction 0 < λ ≤ 1. E.g., Becke introduced the half and half
functional [81], in which a model is defined assuming a linear dependence of Wλ[ρ]
on λ. Setting W0[ρ] equal to exact exchange and W1[ρ] to LSDA exchange-correlation
results in a functional with 50% exact exchange and 50% LSDA exchange-correlation.
Further adjustment of the portion of exact exchange by semi-empirical arguments
gives rise to hybrid functionals like B3LYP [49,61,82,95]. The adiabatic connection
was subsequently used for the construction of non-empirical hybrids in ref. [97], where
a model for Wλ[ρ] consisting of two intersected straight lines fixed by exact exchange,
GGA exchange and GGA exchange-correlation is defined.

However, linear models for the coupling-constant integrand are generally inap-
propriate and curved models should be used. Therefore the asymptotic expansion of
Wλ[ρ] in the λ→ 0 limit is useful

Wλ→0[ρ] = Ex[ρ] + 2λEGL2
c [ρ] +O(λ2) (2.42)

where EGL2
c [ρ] is the correlation energy given by second-order Görling-Levy pertur-

bation theory (GL2) [98]. Ernzerhof [99] employed a Padé interpolation for the
integrand Wλ[ρ], with input from exact exchange and GL2 correlation in the weak
interaction limit, and GGA exchange-correlation for λ = 1.

The mentioned models for the integrand (except for B3LYP) share in common
that for the physical situation with λ = 1 DFAs are used, and for the weak interaction
limit exact exchange is used. A DFA for exchange alone would introduce errors, as
DFA exchange has to be balanced with correlation for error cancellation. At physical
interaction DFA exchange is unproblematic, because it is combined with correlation.
As error cancellation in DFA exchange-correlation might not be satisfactory, a con-
tinuation of the ansatz of Ernzerhof is possible by taking DFA exchange-correlation
at some intermediate λ instead of λ = 1. This would allow to balance the exchange
error with the correlation error. Along this lines Mori-Sánchez, Cohen and Yang [100]
constructed their MCY1 functional. A Padé interpolation is performed with exact
exchange and meta-GGA exchange input in the weak interaction limit and meta-GGA
exchange-correlation for an intermediate λ (chosen semi-empirically).

The discussed models clearly outperform the stand alone DFAs they are based
on [81,97,99,100]. Nonetheless, employment of DFA quantities in their construction
can lead to serious misbehavior in the curvature of the integrand, as demonstrated
in ref. [101] by comparison of the MCY1 approximation with accurate quantities
along the adiabatic connection (see, e.g., figure 3 in ref. [101]). In the same paper
the authors show that accurate exchange-correlation energies can be recovered from
interpolations with accurate full-CI ingredients.

An approach that avoids unfavorable DFA bias is the interaction-strength interpo-
lation (ISI) [102–105]. Exact exchange and GL2 from the weak interaction limit are
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used, along with information from the strong interaction limit. The λ dependence
of Wλ[ρ] is then modeled by an interpolation between the two limits. Next to the
λ→ 0 expansion (2.42), the λ→∞ expansion of the coupling-constant integrand is
invoked for meaningful interpolations

Wλ→∞[ρ] = W∞[ρ] +
W ′∞[ρ]√

λ
+O(λ−p) (2.43)

with p ≥ 5/4 [102]. Exact expressions for the functionals W∞[ρ] and W ′∞[ρ] are
available within the strictly correlated electrons (SCE) formulation or approximately
from the point-charge-plus-continuum (PC) model, see next chapter. Approximate
functionals along the ISI idea will be reviewed in chapter 4 of this thesis.

A range-separated adiabatic connection [106–109] can be used to obtain accurate
exchange-correlation energies from combinations of DFT with wavefunction theory
[110–115]. Especially when applied with multi-determinant wavefunctions, the DFT-
wavefunction hybrids are able to capture long-range static correlation effects, as long
as a limited number of determinants is involved. As, however, static correlation at
short range is of equal importance, the employed DFAs are still crucial for the success
of such scheme and are subject to development [116].



Chapter 3

Strong-Interaction Limit of
Density Functional Theory

3.1 Strictly correlated electrons

The strong-interaction limit λ → ∞ of the adiabatic connection functional Fλ[ρ]
(2.26) has first been studied in the seminal work of Seidl et al. [103,104], and later
formalized and evaluated exactly in a rigorous mathematical way by Gori-Giorgi et
al. [102,117–120]. We give an introduction to the strictly correlated electrons (SCE)
concept that applies in this limit. For a detailed derivation see ref. [117].

We wish to compute the coupling-constant integrand Wλ[ρ] in the strong-interac-
tion limit λ→∞

Wλ→∞[ρ] = 〈Φ∞[ρ]|V̂ee|Φ∞[ρ]〉 ≡ V SCEee [ρ] (3.1)

which serves as useful ingredient for interaction-strength interpolations. Therefore
we need the minimizing wavefunction Φ∞[ρ] of the general functional Fλ[ρ] (2.26)

Fλ[ρ] = min
Φλ→ρ

〈Φλ|T̂ + λV̂ee|Φλ〉 (3.2)

where in the λ→∞ limit the electrostatic energy enters to leading order O(λ) and
the kinetic energy to order O(

√
λ) [117]. Hence, the general functional Fλ[ρ] in the

λ→∞ limit can be written as

Fλ→∞[ρ] = min
Φλ→ρ

〈Φλ|λV̂ee|Φλ〉 = λ min
Φλ→ρ

〈Φλ|V̂ee|Φλ〉 (3.3)

In the first minimization of the above equation the external potential V̂λ =
∑N
i vλ(ri)

that will compensate for the strong electronic repulsion to account for the density
constraint Φ→ ρ is to leading order determined by electrostatic contributions similar
to the electronic energy, i.e. we expect

lim
λ→∞

vλ[ρ](r)

λ
≡ vSCE [ρ](r) (3.4)

19
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with vSCE [ρ](r) being a continuous and finite local one-body potential. This allows
for a computation of the wavefunction Φ∞[ρ] from the unconstrained minimization
problem

min
Φ
〈Φ|V̂ee +

N∑
i

vSCE [ρ](ri)|Φ〉 (3.5)

which is also equivalent to

min
Φ

∫
dr1 . . . drN |Φ(r1 . . . rN )|2Epot[ρ](r1 . . . rN ) (3.6)

where |Φ|2 is the N -electron density, and the total potential energy1 writes

Epot[ρ](r1 . . . rN ) ≡ Vee +

N∑
i

vSCE [ρ](ri)

=

N∑
j>i

1

|ri − rj |
+

N∑
i

vSCE [ρ](ri)

(3.7)

The minimizing N -electron density |Φ∞[ρ]|2 in (3.6) will be a distribution that is zero
everywhere except for positions where Epot[ρ](r1 . . . rN ) reaches its global minimum
(r1 . . . rN ) ∈M , whereby the set of admissible positions is solely determined by the
local SCE potential vSCE [ρ](r), M = M [vSCE ].

For a quantum mechanical density that is typically smooth the potential vSCE has
to be chosen such that the set M [vSCE ] is continuous in (at least) three dimensions,
i.e. the absolute minimum of the 3N -dimensional function Epot needs to be degenerate
over an (at least) three dimensional subspace of the total R3N space. This can be
written as

M = {[r, f2(r) . . . fN (r)] : r ∈ P} (3.8)

with P ⊆ R3 the region where ρ(r) 6= 0. The distribution |Φ∞|2 is correspondingly
constructed such that a reference position r = r1 can be freely chosen in the space
P , and all the positions of the other N − 1 electrons are then fixed by the reference
positions via the co-motion functions

ri ≡ fi[ρ](r) ∀ i ∈ {2 . . . N} (3.9)

This defines the strictly correlated electrons (SCE) state |ΦSCE |2 that is obtained as a
superposition of the electronic configurations in M [vSCE ]

|ΦSCE(r1 . . . rN )|2 =
1

N !

∑
℘

∫
dr
ρ(r)

N
δ(r1 − f℘(1)(r))

× δ(r2 − f℘(2)(r)) · · · δ(rN − f℘(N)(r)) (3.10)

1It shows that the potential energy (3.7) remains unchanged upon permutation of particles. Hence, the
minimizing energy (3.6) is independent of the spin state of the wavefunction and a minimization w.r.t. |Φ|2
is sufficient to determine the ground state. The spin eigenstate of the wavefunction is readily constructed
from the anti-symmetry requirement on the wavefunction [117].
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where ℘ denotes a permutation of 1 . . . N . As we will see later the co-motion functions
must satisfy special properties to account for the wavefunction constraint Φ → ρ.
Overall the SCE state can be visualized as “floating Wigner crystal” describing the
density ρ.

As mentioned earlier, the local potential vSCE [ρ](r) must compensate the electronic
repulsion energy when the electrons are at their respective positions r, f2(r) . . . fN (r).
The potential energy Epot of (3.7) will then be minimized

∇r1Epot[ρ](r1 . . . rN )|r1=r,r2=f2(r)... = 0

∇r2Epot[ρ](r1 . . . rN )|r1=r,r2=f2(r)... = 0

...

(3.11)

and from this equilibrium conditions the SCE potential vSCE [ρ](r) follows

∇r1vSCE(r1)|r1=r,r2=f2(r)... = −
N∑
i6=1

r− fi(r)

|r− fi(r)|3

∇r2vSCE(r2)|r1=r,r2=f2(r)... = −
N∑
i6=2

f2(r)− fi(r)

|f2(r)− fi(r)|3

...

(3.12)

showing that vSCE also accounts for the compensation of the net Coulombic force on
one electron exerted by the other N − 1 electrons when all the particles are at their
respective positions.

Equations (3.12) are N different equations for the computation of the potential
vSCE . We see that they all become equivalent if the co-motion functions obey the
group properties

f1(r) ≡ r

f2(r) = f(r)

f3(r) = f(f(r))

f4(r) = f(f(f(r)))

...

f(f(. . . f(f(r))))︸ ︷︷ ︸
N times

= r

(3.13)

which also guarantee the indistinguishability of the electrons.
Eventually, the co-motion functions fi(r) within the density constraint have to be

specified. Therefore the quantum mechanical interpretation of the density is invoked
by demanding that the probability of finding the reference electron at position r in
volume element dr is equal to finding an other electron at position fi(r) in the volume
element dfi(r)

ρ(r) dr = ρ(fi(r)) dfi(r) ∀ i ∈ 2 . . . N (3.14)
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thus ensuring the invariance of ρ under the coordinate transform r → fi(r). If the
differential equation (3.7) and the group properties (3.13) are fulfilled, it is easy to
verify that SCE N particle density (3.10) yields the required density ρ.

With the SCE state (3.10) the functional V SCEee [ρ] evaluates according to

V SCEee [ρ] =

∫
dr
ρ(r)

N

N∑
j>i

1

|fi(r)− fj(r)| (3.15)

It is given in terms of the co-motion functions fi, analogous to the Kohn-Sham orbitals
ϕi that give Ts[ρ]. We see that the possibility of all electrons on top of each other
r = fi(r), which is also a solution to the differential equation (3.14) and obeys the
group properties (3.13), is excluded, as this would not minimize the energy functional
(3.15). Hence, a continuous potential vSCE will be obtained as the first derivative of
the potential (3.12) remains finite everywhere in space. An alternative expression for
V SCEee [ρ] will be derived in chapter 4 of this thesis.

With the SCE potential vSCE [ρ](r) obtained by integration from (3.12), we will
have that the potential energy (3.7) is minimum when the electronic positions ri ∈
M [vSCE ], or, equivalently, when the associated density at each point is equal to ρ(r) .
This follows by defining an energy density functional for the SCE reference system
with potential vSCE [ρ](r), which for an arbitrary density ρ̃ writes

ESCEtot [ρ̃] = V SCEee [ρ̃] +

∫
dr ρ̃(r)vSCE [ρ](r) (3.16)

It will satisfy the stationary condition

δESCEtot [ρ̃]

δρ̃(r)

∣∣∣∣
ρ̃=ρ

= 0 (3.17)

i.e. we will have that

δV SCEee [ρ̃]

δρ̃(r)

∣∣∣∣
ρ̃=ρ

= −vSCE [ρ](r) (3.18)

The functional V SCEee [ρ]− U [ρ] can be identified as the zeroth-order term in the
λ→∞ expansion of the coupling-constant integrand Wλ[ρ] (2.43). The next leading
term in the series can be given by taking small vibrations of the electrons around their
SCE positions into account and is twice the zero-point energy (ZPE) [102]

W ′∞[ρ] = 2V ZPEee [ρ] (3.19)

For electrons in D dimensions it is given by

V ZPEee [ρ] =
1

2

∫
dr
ρ(r)

N

DN−D∑
i

ωi(r)

2
(3.20)

with ωn(r) the zero-point vibrational frequencies around the SCE minimum. They
are given by the square root of the eigenvalues of the Hessian matrix that enters the
expansion of the SCE potential energy up to second order [102].
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The physics of strong correlation encoded in the highly non-local density depen-
dence of the SCE functional does not come for free: the SCE problem is sparse but
non-linear, and an algorithm for its evaluation following the original formulation for
general three-dimensional densities is still an open problem. Analytic expressions for
the co-motion functions fi(r) for three-dimensional densities of spherical symmetry –
and other systems with similar quasi-one-dimensional characteristics – will be given
in the next section. An enticing route that avoids the co-motion functions involves the
mass-transportation-theory reformulation of the SCE functional [120–122], in which
V SCEee [ρ] is given by the maximum of the Kantorovich dual problem

V SCEee [ρ] = max
u


∫

dr ρ(r)u(r) :

N∑
i

u(ri) ≤
N∑
j>i

1

|ri − rj |

 (3.21)

where u(r) = vSCE [ρ](r) + C, and C is a constant. This is a maximization under
linear constraints that yields at once the functional and its functional derivative.
Although the number of linear constraints is infinite, this formulation may lead to
approximate but accurate approaches for the construction of V SCEee [ρ] and vSCE , as
shown by Mendl and Lin [123]. However, the procedure is still cumbersome and
needs further development. Recently a solution of the SCE problem was demonstrated
for H2 molecular densities [124] that bases on the Monge formulation of the optimal
transport problem to determine the co-motion functions. Also here, the employed
numerical discretization technique does not allow for a treatment of considerably
larger systems. Currently the possibility of the construction of approximate co-motion
functions for the diatomic molecules is also explored [125]. Models that derive from
the SCE concept and provide approximate expressions for the strong-interaction limit
will be introduced in section 3.3.

An alternative density functional framework, based on the study of the strong-
interaction limit of the HK functional, was presented in ref. [126]. In this approach
the SCE reference system was used instead of the non-interacting one of Kohn and
Sham, and the universal functional was defined as

F [ρ] = V SCEee [ρ] + Ekd[ρ] (3.22)

where the kinetic-decorrelation energy Ekd[ρ] accounts for the kinetic energy and
corrects the correlation estimate of V SCEee [ρ]

Ekd[ρ] = 〈Φλ=1|T̂ |Φλ=1〉+ 〈Φλ=1|V̂ee|Φλ=1〉 − V SCEee [ρ] (3.23)

A linear adiabatic connection for the kinetic energy can be used to obtain an exact
expression for the kinetic-decorrelation energy Ekd[ρ] [126]. Defining the scaled
functional

Kα[ρ] = min
Φ→ρ
〈Φ|αT̂ + V̂ee|Φ〉 ∀ α ∈ R (3.24)

Ekd[ρ] results from the integration

Ekd[ρ] =

∫ 1

0

dα 〈Φα[ρ]|T̂ |Φα[ρ]〉 (3.25)
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where Φα[ρ] is the minimizing wavefunction of the scaled functional Kα[ρ].
The first results obtained with such SCE-DFT neglecting Ekd[ρ] showed its ability

to describe systems in the extreme strongly correlated regime with a much better
accuracy than standard KS-DFT [118,126]. On the downside, SCE-DFT fails as soon as
the fermionic nature of the electrons plays a significant role [118]. Functionals for the
kinetic energy and correlation correction should therefore be developed. Furthermore,
the formalism lacks some of the appealing properties of the Kohn-Sham approach,
such as its capability to predict (at least in principle) exact ionization energies. Also
crucial concepts widely employed in chemistry and solid state physics, like the Kohn-
Sham orbitals and orbital energies, are totally absent in SCE-DFT. In chapter 5 of
this thesis, a combination of the KS and SCE frameworks will be presented, with the
aim to profit from the two complementary reference systems in a single ground state
calculation.

3.2 Co-motion functions for quasi-one-dimensional
densities

For the evaluation of the SCE energy V SCEee [ρ] (3.15) and its potential vSCE [ρ](r)
(3.12) the co-motion functions are required. They are solutions to the differential
equation (3.14). We will solve this differential equation in one dimension for densities
of arbitrary shape, and in three dimensions for spherically symmetric densities.

One dimension To determine the SCE co-motion functions for the one-dimensional
case we write the differential equation (3.14) in one dimension

ρ(x)dx = ρ(fi(x))

∣∣∣∣dfi(x)

dx

∣∣∣∣ dx (3.26)

Defining the cumulant

Ne(x) =

∫ x

−∞
dy ρ(y) (3.27)

we integrate (3.26) from −∞ to x, and see that the one-dimensional solution to fi(x)
satisfies

Ne(x) = ±Ne(fi(x))∓Ne(fi(−∞)) (3.28)

where the signs depend on the signs of dfi/dx. As the inverse of the cumulant Ne(x) is
well defined in the domain [0, N), fi(x) can be extracted from the above expression
once the signs dfi/dx together with the initial conditions Ne(fi(−∞)) are known.

To this end the principle of “total suppression of charge fluctuations” [103] is
useful. It expresses that the density in between two neighboring SCE positions always
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Figure 3.1: Schematic illustration of the principle of “total suppression of charge
fluctuations” in one dimension. Two adjacent strictly correlated positions fi(x) are
always separated by a distance such that the density between them integrates exactly
to one.

integrates to one (cf. figure 3.1), and can be written as follows2

i− 1 = Ne(fi(x))−Ne(x) for x ≤ fi(x)

N − i+ 1 = Ne(x)−Ne(fi(x)) for x > fi(x)
(3.29)

An intuitive example is given by the one-dimensional analog of the Wigner crystal,
where the electrons are at the SCE positions. For a rigorous proof of the “charge
fluctuation suppression” principle see ref. [127].

Consequently, the signs dfi/dx are always positive and the initial conditions Ne
(fi(±∞)) = {i− 1,−N + i− 1} are set. The co-motion functions follow from (3.28)

fi(x) =

{
N−1
e [Ne(x) + i− 1] for x ≤ aN−i+1

N−1
e [Ne(x)−N + i− 1] for x > aN−i+1

(3.30)

where ak = N−1
e (k).

One-dimensional, symmetric in origin Before considering the co-motion functions
of spherical densities, it is illustrative to derive the co-motion functions for a one-
dimensional symmetric density centered at the origin ρ(x) = ρ(−x). A symmetry
adapted coordinate system is chosen, which expresses the electronic positions by
the distance to the origin and the orientation w.r.t. the origin x→ {|x| = x, θ} with
θ = +/−.

The orientations can be obtained from the minimization of the electrostatic energy
of a single SCE configuration (3.7) for a given set of distances

Epot[ρ](x1 . . . xN ,Θ) =

N∑
j>i

1

|xi ± xj |
+

N∑
i

vSCE [ρ](xi) (3.31)

where Θ denotes collectively the orientations of the N−1 electrons w.r.t. the reference
electron at x1. As vSCE is a variable of the distance alone, the minimizing orientations

2We label the co-motion functions from f1 = x to the right with increasing index i, and to the left with
decreasing index whereby fN the first co-motion function to the left of f1 = x.
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can be found by varying the signs only in the first term on the r.h.s. of the above
equation.

For the distances we need to solve the differential equation (3.14)

ρ(x)dx = ρ(fi(x))

∣∣∣∣dfi(x)

dx

∣∣∣∣ dx (3.32)

The symmetry adapted cumulant is defined

Ne(x) =

∫ x

0

dy 2ρ(y) (3.33)

and (3.32) is integrated from 0 to x

Ne(x) = ±Ne(fi(x))∓Ne(fi(0)) (3.34)

where the signs depend on the sign of |dfi(x)/dx|. From the “charge fluctuation sup-
pression” principle the initial conditions Ne(|fi(0)|) can be found

2(i− 1) = Ne(fi(x))−Ne(x) for fi(x) > x (3.35)

where the factor of two arises due to the symmetry of the problem.
For the correlated position fi(x) being to the right of reference position x, sgn

(dfi/dx) = + follows, and we obtain the co-motion functions for the first branch

fi(x) = N−1
e [Ne(x) + 2i− 2] for x < aN−2i+2 (3.36)

For fi(x) to the left of x we have to distinguish the two cases: (i) fi(x) has the
same orientation as the reference electron x, i.e. sgn(fi(x)) = sgn(x), (ii) fi(x) is
opposite to the reference electron x, i.e. sgn(fi(x)) = −sgn(x).

In case (i) the “charge fluctuation suppression” principle reads

2(N − i+ 1) = Ne(x)−Ne(fi(x)) for fi(x) > x, sgn(fi(x)) = sgn(x) (3.37)

and the co-motion functions in this branch read

fi(x) = N−1
e [Ne(x)− 2N + 2i− 2] for x > a2N−2i+2 (3.38)

For the second case (ii) we modify the “charge fluctuation suppression” expression

2(N − i+ 1) = Ne(x) +Ne(fi(x)) for fi(x) > x, sgn(fi(x)) = −sgn(x) (3.39)

Taking into account the sign change in (3.34) due to the sign change in dfi/dx, the
co-motion functions for the last branch read

fi(x) = N−1
e [−Ne(x) + 2N − 2i+ 2] for aN−2i+2 < x < a2N−2i+2 (3.40)

Co-motion functions (3.38) and (3.40) conflate if the absolute value is taken in
the square brackets, and the co-motion functions on the entire domain summarize to

fi(x) =

{
N−1
e [Ne(x) + 2i− 2] for x ≤ aN−2i+2

N−1
e [|Ne(x)− 2N + 2i− 2|] for x > aN−2i+2

(3.41)
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Three dimensions, spherically symmetric We express the electronic positions in
spherical coordinates and write the electrostatic energy of a single SCE configura-
tion (3.7) in terms of these coordinates [117]

Epot[ρ](r1 . . . rN ,Ω) =

N∑
j>i

1

|ri − rj |
+

N∑
i

vSCE [ρ](ri) (3.42)

where Ω denotes the 2N − 3 relative angles with the reference electron on the z-axis
and a second one in the xz-plane. Similar to the one-dimensional symmetric case, the
minimizing angles are obtained by minimizing the first term on the r.h.s. of (3.42)
independent of the second term. This corresponds to the equilibrium solution of N
rotatable sticks of given lengths r1 . . . rN , with one end of a stick being fixed in the
origin and the other end with a point charge pinned to it.

The radial distances are found again from the radial differential equation of (3.14)

4πx2ρ(x)dx = 4πf2
i (x)ρ(fi(x))

∣∣∣∣dfi(x)

dx

∣∣∣∣ dx (3.43)

Defining the spherical cumulant

Ne(r) =

∫ r

0

ds 4πs2ρ(s) (3.44)

the SCE co-motion functions derive as in the one-dimensional symmetric analog from
above, and give the radial distances according to

fi(r) =

{
N−1
e [Ne(r) + 2i− 2] for r ≤ aN−2i+2

N−1
e [|Ne(r)− 2N + 2i− 2|] for r > aN−2i+2

(3.45)

In chapter 6 of this thesis we will generalize the co-motion functions given here to
densities that integrate to non-integer electron numbers.

3.3 Models for the strong-interaction limit

An approximation to the indirect electrostatic energy Wλ[ρ] of (2.28) in the strong-in-
teraction limit, which can be evaluated for arbitrary three-dimensional densities, is
given by the point-charge-plus-continuum (PC) model [104,105,128]. The idea is to
rewrite Wλ[ρ] as the electrostatic energy Ees of a system of N electrons in the state
Φλ[ρ] embedded in a smeared background of positive charge ρ+(r) = ρ(r)

Wλ[ρ] = Ees[Φλ[ρ], ρ+] = Eee + Eeb + Ebb

= 〈Φλ[ρ]|V̂ee|Φλ[ρ]〉 − U [ρ]
(3.46)

where the electronic repulsion energy is Eee = 〈Φλ[ρ]|V̂ee|Φλ[ρ]〉, the electron-back-
ground interaction is Eeb = −2U [ρ], and the background-background interaction is
Ebb = U [ρ], thus yielding exactly Wλ[ρ].
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Relation (3.46) is valid for every λ, but in the λ → ∞ limit, when Φλ → ΦSCE ,
we expect that the electrons minimize Ees[Φλ, ρ] by occupying relative positions
that divide the space into neutral cells with possibly zero (or weak) lowest-order
electrostatic multipole moments [105]. The idea is then that for one of the SCE
configurations {r, f2(r), ..., fN (r)} we may approximate the indirect electron-electron
repulsion by the sum of the electrostatic energies of all the cells (i.e. we neglect the
cell-cell interaction in view of their neutrality and low multipole moments)

Ees[Φλ[ρ], ρ+] ≈
N∑
i

Ecell([ρ]; fi(r)) (3.47)

where Ecell([ρ]; fi(r)) is the electrostatic energy of the cell around an electron at posi-
tion fi(r), equal to the sum of the attraction between the electron and the background
contained in the cell and the background-background repulsion inside the cell.

To obtain the indirect electronic repulsion energy Wλ[ρ] of a continuous density
the probability weighted average is taken

WPC
∞ [ρ] =

∫
dr
ρ(r)

N

N∑
i

Ecell([ρ]; fi(r)) (3.48)

For the strictly correlated positions fi that obey the differential equation (3.14) it
follows that (3.48) is equivalent to

WPC
∞ [ρ] =

∫
dr ρ(r)Ecell([ρ]; r) (3.49)

that avoids eventually the dependence on the SCE co-motion functions. See chapter 4
for further discussion.

Finally, the cell energy is approximated. A simple model for the PC cell is a
sphere of uniform background around the electron, set by the electronic position
ρ+(r′) = ρ(r). From the condition of charge neutrality the cell radius is fixed to
rs(r) =

(
4π
3 ρ(r)

)−1/3
, and the PC-LDA approximation for the electrostatic energy is

obtained

ELDAcell (r) = − 9

10

(
4π

3

)1/3

ρ(r)1/3 (3.50)

For a more accurate model of W∞[ρ] the density gradient ∇ρ can be used. A cell
is constructed with homogeneously decaying background density fixed by ρ(r) and
∇ρ(r). As the dipole moment of this cell will not be zero when the electron is put
in the center of the cell, the origin of the cell is shifted away from the electron. The
electrostatic energy of the PC-GGA cell is

EGGAcell (r) = ELDAcell (r) +
3

350

(
3

4π

)1/3 |∇ρ(r)|2
ρ(r)7/3

(3.51)



Models for the strong-interaction limit 29

The coefficient W ′∞[ρ] in the λ→∞ expansion (2.43) of Wλ[ρ] can also be given
approximately within the PC-GGA model

W ′PC∞ [ρ] =

∫
dr

[
Cρ(r)3/2 +D

|∇ρ(r)|2
ρ(r)7/6

]
(3.52)

where C = 1.535 and D = −0.02558. For further explanation the reader is referred
to [105].

Refs. [102] and [117] compare the PC solutions with the exact SCE values
for small atoms: while WPC

∞ [ρ] is a very reasonable approximation to its exact
counterpart [117], the original W ′PC∞ [ρ] turned out to be much less accurate [102].
The exact SCE results could be used to propose a revised PC approximationW ′revPC∞ [ρ],
having accuracy similar to the one of WPC

∞ [ρ]. Hence, the PC model can provide useful
ingredients for an interaction-strength interpolation on the integrand Wλ[ρ]. On the
downside, due to the approximate evaluation of the cell energy from (semi-)local
quantities, the functional derivative of (3.48)-(3.49) will not embody the non-local
features required to describe strong correlation.

Alternative models for the SCE electronic interaction can be constructed from the
exchange-correlation hole and have just recently appeared [129].





Chapter 4

Energy Densities in the
Strong-Interaction Limit of
Density Functional Theory

A. Mirtschink, M. Seidl and P. Gori-Giorgi
“Energy densities in the strong-interaction limit of density functional theory”

J. Chem. Theory Comput. 8, 3097 (2012)

4.1 An overview

The interaction-strength interpolation (ISI) idea to model the λ dependence of Wλ[ρ]
by an interpolation between the weak- and strong-interaction limits was first used for
approximate functional development by Seidl and coworkers [103–105]. As at the
time of construction of their ISI exact input quantities from the strong interaction limit
were not available, the PC model was introduced. It provides approximate expressions
for W∞[ρ] and W ′∞[ρ] (2.43) in a DFA spirit by using (semi-)local quantities, cf. sec-
tion 3.3, that can lead to erroneous behavior of Wλ[ρ] (see below for more discussion).
A full avoidance of DFA bias is possible with the SCE many-electron formalism, within
which the functionals W∞[ρ] and W ′∞[ρ] can be accurately computed.

Although free of any DFA bias (if we use exact input quantities), an unpleasant
feature of the ISI is the violation of size consistency1. This is due to the non-linear way
the (on its own size consistent) ingredients W0[ρ], W ′0[ρ], W∞[ρ] and W ′∞[ρ] enter in
the interpolation. E.g., the revised ISI [102] (which behaves better in the λ→∞ limit

1For a critical review on size consistency of approximate energy density functionals see, e.g., ref. [130]
and, especially, ref. [131].

31
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than the original ISI) reads

W revISI
λ [ρ] =

∂

∂λ

(
a[ρ]λ+

b[ρ]λ√
1 + c[ρ]λ+ d[ρ]

)
(4.1)

where a, b, c and d are non-linear functions of W0[ρ], W ′0[ρ], W∞[ρ] and W ′∞[ρ],
determined by imposing the asymptotic expansions (2.42) and (2.43)

a[ρ] = W∞[ρ] (4.2)

b[ρ] = − 8EGL2
c [ρ]W ′∞[ρ]2

(Ex[ρ]−W∞[ρ])2
(4.3)

c[ρ] =
16EGL2

c [ρ]2W ′∞[ρ]2

(Ex[ρ]−W∞[ρ])4
(4.4)

d[ρ] = −1− 8EGL2
c [ρ]W ′∞[ρ]2

(Ex[ρ]−W∞[ρ])3
(4.5)

Notice that the lack of size consistency is shared by all functionals in which the exact
exchange energy (or any global energy) enters in a non-linear way. Thus also, e.g.,
the MCY1 functional of section 2.2.7.

As a final remark on the revISI functional we add that, if one makes the approxi-
mation EGL2

c ≈ EMP2
c , it can be viewed as a double hybrid functional. With respect

to available double hybrids, the revISI lacks size consistency, but it has the advantage
of being able to deal with the small-gap systems problematic for perturbation theory.
The practical impact of the lack of size consistency of the revISI functional in this
context still needs to be tested, but from theoretical grounds it can be expected that
difficulties in the dissociation of chemical bonds arise (for further discussion in the
context of fractional electron numbers see, e.g., ref. [132–135]).

A possible way to recover size consistency in the ISI framework is given by rewriting
the integrand Wλ[ρ] as integral of local quantities

Exc[ρ] =

∫ 1

0

dλ

∫
dr ρ(r)wλ[ρ](r) (4.6)

where wλ[ρ](r) is an interaction-strength dependent energy density. A local ISI model
for wλ[ρ](r) can then be attempted by interpolating between the λ → 0 and the
λ→∞ limits in every point of space

wλ[ρ](r) ≈ wISIλ [ρ](r) (4.7)

As obvious from (4.6), the energy density wλ[ρ](r) is not uniquely defined2, and
an important requirement in the construction of interpolations is that the local
input quantities in the weak- and in the strong-interaction limits are defined in
a consistent manner (same gauge). For a further discussion on the gauge of the
exchange-correlation energy density see, e.g., ref. [136], and for the kinetic energy
density see, e.g., refs. [137–140]. Here we focus on the conventional, physically
transparent, definition in terms of the electrostatic energy of the exchange-correlation
hole.

2Adding any functional of the density that integrates to zero, will change the energy density locally, but
not the integrated value.
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4.2 Energy density: definitions

One of the most common definitions of the energy density of (4.6) is given by
the interaction-strength dependent exchange-correlation hole hλxc(r, r

′) (see, e.g.,
refs. [141–143])

wλ[ρ](r) =
1

2

∫
dr′

hλxc(r, r
′)

|r− r′| (4.8)

where hλxc(r, r
′) relates to the pair density Pλ2 (r, r′)

hλxc(r, r
′) =

Pλ2 (r, r′)

ρ(r)
− ρ(r′) (4.9)

and Pλ2 (r, r′) is obtained from the interaction-strength dependent wavefunction Φλ[ρ]
of the adiabatic connection (2.26)-(2.28)

Pλ2 (r, r′) = N(N − 1)
∑

σ1...σN

∫
dr3 . . . drN |Φλ(rσ1, r

′σ2, r3σ3 . . . rNσN )|2 (4.10)

In the definition of (4.8) wλ[ρ](r) is the electrostatic potential of the exchange-
correlation hole (a negative charge distribution normalized to −1) around a reference
electron in r. This quantity at the physical coupling strength λ = 1 (plus the Hartree
potential) has been also called vcond(r) in the literature (see, e.g., ref. [144]).

Physical λ = 1 For the exact energy density at coupling-strength λ = 1 we enter the
definition of the exchange-correlation hole (4.9) in (4.8)

w1[ρ](r) =
1

2ρ(r)

∫
dr′

P 1
2 (r, r′)

|r− r′| −
1

2

∫
dr′

ρ(r′)

|r− r′| (4.11)

with the pair density given by the full many-body wavefunction Φ1 according to
(4.10). The density ρ1(r) corresponding to P 1

2 (r, r′) defines the density that is to be
held constant along the adiabatic connection ρ(r) ≡ ρ1(r) .

The exact w1[ρ](r) is computed in the following with accurate wavefunction
approximations and can serve as benchmark for models on wλ[ρ](r). It gives also an
impression on the relevance of the strong-interaction limit for accurate interpolations
on wλ[ρ](r), and it is the aim of this work to explore this relevance. If the physical
system is close to the KS one, correlation is less important and already Hartree-Fock
should perform well. In this case, we expect the inclusion of the λ → ∞ reference
in the wλ[ρ](r) model to be less significant. In contrast, for more strongly correlated
systems the physical energy density is expected to tend more towards the λ → ∞
limit, and the SCE functional should provide useful input for an accurate wλ[ρ](r)
model.

Kohn-Sham λ = 0 For non-interacting electrons the formal solution to the wave-
function is a Slater determinant Φ0 → Ψ, and the energy density w0[ρ](r) is given by
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the electrostatic potential of the KS exchange hole hx(r, r′)

w0[ρ](r) =
1

2

∫
dr′

hx(r, r′)

|r− r′| (4.12)

as the pair density writes

P 0
2 (r, r′) = ρ(r)ρ(r′) + ρ(r)hx(r, r′) (4.13)

In models for wλ[ρ](r) with w0[ρ](r) input one can use the exact exchange hole built
from a simple Hartee-Fock like expression in terms of the KS orbitals ϕi, or a density
functional approximation for hx(r, r′), e.g.the one of Becke and Roussel [145]. These
two choices would correspond, respectively, to construct a hyper-GGA and a meta-GGA
functional from a local interpolation along the adiabatic connection.

For our preliminary study of energy densities along the adiabatic connection, the
exact KS orbitals ϕi – or equivalently the effective one-body potential vs(r) (2.25) –
for the given physical density ρ(r) have to be found. This can be done accurately. e.g.,
by inversion of the KS equations [146–151] or by the use of Lieb’s Legendre transform
DFT formalism [46,152,153].

w0[ρ](r) will be a key ingredient for an ISI-like interpolation on the energy density.
To obtain meaningful interpolations, knowledge of the next leading order in the
asymptotic expansion of wλ[ρ](r) around λ = 0 is required additionally, but not
available yet. An outlook will be given in the conclusions of this chapter.

Strictly correlated electrons λ→∞ The exchange-correlation energy density (4.8)
in the strong-interaction limit w∞[ρ](r) is the central quantity of this chapter. In this
section we will derive an exact expression from the SCE formalism.

We start by inserting the strictly correlated state ΦSCE (3.10) into the defin-
tion of the pair density (4.10) to obtain in the strong-interaction limit P∞2 (r, r′) =
PSCE2 (r, r′)

PSCE2 (r, r′) =

N∑
i 6=j

∫
ds
ρ(s)

N
δ(r− fi(s))δ(r

′ − fj(s)) (4.14)

which has a transparent physical meaning: two electrons can only be found at strictly
correlated relative positions. We can then compute∫

dr′
PSCE2 (r, r′)

|r− r′| =

N∑
i 6=j

∫
ds
ρ(s)

N

δ(r− fi(s))

|r− fj(s)|
(4.15)

where on the r.h.s. we have already integrated over the variable r′. By the properties
of the Dirac delta distribution and of the co-motion functions, (4.15) becomes∫

dr′
PSCE2 (r, r′)

|r− r′| =
1

N

N∑
i 6=j

ρ
(
f−1
i (r)

)
|det ∂αf

−1
i,β (r)|

|r− fj
(
f−1
i (r)

)
|

=
ρ(r)

N

N∑
i 6=j

1

|r− fj
(
f−1
i (r)

)
|

(4.16)
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with |det ∂αf
−1
i,β (r)| (α, β = x, y, z) the determinant of the Jacobian of the transforma-

tion r → f−1
i (r), and we have used the fact that all the fi(r) satisfy the differential

equation (3.14) (as do their inverses, which by virtue of the group properties of
the co-motion functions (3.13) are also co-motion functions for the same configura-
tion [102,117]). Now we can use once more the group properties of the co-motion
functions to recognize that for all i 6= j the function fj

(
f−1
i (r)

)
must be another

co-motion function with the exclusion of f1(r) = r (the identity can arise only if i = j).
The double sum in the last term of (4.16) is then exactly equal to N times a single
sum over all the co-motion functions fk(r) with k ≥ 2, so that∫

dr′
PSCE2 (r, r′)

|r− r′| = ρ(r)

N∑
k=2

1

|r− fk(r)| (4.17)

Inserting (4.17) into (4.8)-(4.9), we finally obtain

w∞[ρ](r) =
1

2

N∑
k=2

1

|r− fk(r)| −
1

2
vH(r) (4.18)

representing the exchange-correlation energy density in the strong-interaction limit
by means of the SCE co-motion functions.

Notice that in previous work the exact W∞[ρ] was given as [102,117,118]

W∞[ρ] =
1

2

∫
dr
ρ(r)

N

N∑
i 6=j

1

|fi(r)− fj(r)| − U [ρ] (4.19)

suggesting a corresponding energy density

w̃∞[ρ](r) =
1

N

N∑
i

1

2

N∑
i 6=j

1

|fi(r)− fj(r)| −
1

2
vH(fi(r))

 (4.20)

Expressions (4.18) and (4.20) yield the same W∞[ρ] when integrated with the density
ρ(r), but are locally different. They show a general feature of the co-motion functions:
Any given energy density wa∞(r) can always be transformed into a different energy
density wb∞(r) defined as

wb∞(r) ≡ 1

N

N∑
i

wa∞(fi(r)) (4.21)

such that ρ(r)wa∞(r) and ρ(r)wb∞(r) integrate to the same quantity. This gauge
freedom arises because all the co-motion functions satisfy the differential equation
(3.14). Though only expression (4.18) corresponds to the gauge of the exchange-
correlation hole (4.8)-(4.10) as only this one derives from the pair density.
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4.3 Energy densities for atoms

We have performed full-CI calculations in an aug-cc-pVTZ basis for some two and
four electron atoms within the Gamess-US package [154] to obtain accurate ground
state wavefunctions for the physical interaction strength. Starting from this, we are
able to calculate the energy density in the gauge of the exchange-correlation hole for
λ = 0, 1,∞.

At λ = 1 we calculate the energy density from the full-CI pair density (4.11), by
a program similar to the one used for the calculation of vcond in ref. [144]. For the
energy density at λ = 0 (4.12), we have to compute the single particle KS orbitals
corresponding to the full-CI density first. In the case of two electron atoms they are
readily accessible from the simple relationship

ϕ(r) =

√
ρ(r)

2
(4.22)

For the four electron atoms we choose the scheme of van Leeuwen, Baerends and
Gritsenko [147,148] to invert the KS equations. In the strong-interaction limit λ =∞,
the co-motion functions fi(r) for the evaluation of the energy density are easily
constructed within the Wolfram Mathematica computer algebra environment [155].

In figure 4.1 we show the energy densities at λ = 0, 1 and∞ for two- and four-
electron atoms. He and Be are relatively weakly correlated, and their λ = 1 energy
densities are much closer to the KS ones than to the SCE ones. Hence, a description
at the HF level is very reasonable and gives indeed at least 98.5% of the total energy.
The anion H−, instead being a system with a more diffuse density and thus more
correlated, has a physical energy density that is much more in between the KS and
the SCE curves. In this case the HF treatment gives only 94% of the total energy, that
in addition is higher than the total energy of the neutral Hydrogen, i.e. in HF H− is
unbound. Here we expect the inclusion of the information from the strong-interaction
limit in an ISI model to be important. The valence regions of Be and Li− (see the
insets in figure 4.1) can also be better described by a proper inclusion of the λ =∞
information.

As a result we see that, an improved description of exchange and correlation
can be expected by inclusion of the SCE reference. Within the accessible set of
atomic systems here, the strongest correlation is given in the case of H−. Though the
correlation is not overly pronounced because of the prevailing influence of the nuclear
potential, leading to non-vanishing amounts of kinetic energy. For the investigation of
correlation dominated systems we turn to systems with tuneable correlation in which
the impact of the external potential can be diminished.

4.4 Energy densities for Hooke’s atom

Another useful class of systems for the study of the impact of the strong-interaction
limit on the physical energy density is given by three-dimensional model quantum
dots, also known as Hooke’s atoms. Here two electrons (still interacting with the 1/r
Coulomb repulsion) are confined in a harmonic external potential, and correlation
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Figure 4.1: Energy densities wλ[ρ](r) in the definition of the electrostatic potential
of the exchange-correlation hole for accurate full-CI densities (aug-cc-pVTZ) and
coupling strength λ = 0, 1,∞.
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Figure 4.2: Energy densities wλ[ρ](r) in the definition of the electrostatic potential
of the exchange-correlation hole for the exact density of Hooke’s atoms [156] with
subordinate correlation (ω = 0.5) and pronounced correlation (ω = 0.0014).
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Figure 4.3: The same energy densities of figure 4.2 multiplied by the density
ρ(r)wλ[ρ](r).

gains importance when the spring constant of the harmonic potential is lowered. We
have computed the energy density for Hooke’s atoms with spring constants for which
the analytic solution to the physical wavefunction can be found [156].

Energy densities for the largest and smallest spring constant considered are dis-
played in figure 4.2 and figure 4.3. As expected, the physical energy density comes
closer to the SCE energy density in the more strongly correlated case. An overall
correspondence of the physical and SCE energy densities, however, is scarcely pro-
vided, cf. figure 4.2. The energetically meaningful product with the density ρ(r)wλ(r)
is nevertheless remarkably well represented by the SCE curve, figure 4.3.

Additionally, we observe that the physical energy density crosses the SCE energy
density. Intuitively one would expect the physical energy density to be always in
between the KS and SCE energy densities, as the KS energy density represents
the weakest possible correlation and the SCE energy density the strongest possible
correlation for a given density. However, the wavefunctions are chosen according to
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the global quantities

min
Φ→ρ
〈Φ|T̂ |Φ〉 ⇒ ΨKS

min
Φ→ρ
〈Φ|V̂ee|Φ〉 ⇒ ΦSCE

min
Φ→ρ
〈Φ|T̂ + V̂ee|Φ〉 ⇒ Φλ=1

(4.23)

yielding the global inequalities

〈ΦSCE |V̂ee|ΦSCE〉 ≤ 〈Φλ=1|V̂ee|Φλ=1〉 ≤ 〈ΨKS |V̂ee|ΨKS〉 (4.24)

Locally these inequalities can be violated without violating the global ones, and the
physical energy density can go below the SCE energy density.

The crossing feature can be attributed to “polarization” effects between the two
electrons, reflected in the pair density. By “polarization” we refer to two-body effects,
i.e. how one electron is influenced by the other one [157]. For the two electrons
considered here, when one of the electrons is at infinity, the other electron will be
mainly found around the origin (where the minimum of the external potential is
located). The physical (λ = 1) description of this electron is then a charge distribution
around the origin due to the available kinetic energy. As the other electron approaches
the origin from infinity, this charge distribution is deformed. For the KS (λ = 0) system,
where we deal with an independent-electrons picture, this effect is not contained in
the pair density as it would be expressed by a term of mutual dependence between
the positions of the electrons, that can only arise in a beyond-orbital description of
the wavefunction. For the SCE system (λ =∞) there is a perfect mutual dependence
between the two electronic positions, where the kinetic energy is neglected. In other
words, the electrons are modeled as point charges and not as charge distributions. The
proper description of this “polarization” effect is thus missed in the SCE wavefunction.
It can probably be recovered, at least partially, by considering the next leading term
in the λ → ∞ expansion, corresponding to zero-point oscillations around the SCE
solution [102].

To underline this argument we have computed the asymptotic behavior of the
physical energy density for the Hooke’s atom with ω = 0.5, using the asymptotic
expansion of the physical pair density [157]

P 1
2 (r, r′)

ρ(r)ρN−1(r′)
→ 1− 2

r′

r
cos(∆Ω) + · · · (r →∞) (4.25)

where ρN−1(r′) is the density of the N − 1-particle system and ∆Ω the angle between
r and r′. The second-order term in (4.25) represents the mentioned “polarization”
correction [157]. As can be seen from figure 4.4, for large |r− r′| the energy density
in the KS and SCE case behaves like −1/2r, which corresponds to the first order in
the expansion of the physical pair density. Inclusion of the second-order term in the
energy density gives essentially the physical behavior and deviates from the KS and
SCE energy densities.

Although the crossing happens in a region in which the density is very small, and
thus with an almost negligible energetic contribution, cf. figure 4.3, the analysis
presented here can be helpful in the construction of models for wλ[ρ](r).
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4.5 Local assessment of the point-charge-plus-contin-
uum model in atoms

The availability of exact expressions for the strong-interaction limit within the SCE
formalism allows for a validation of models for the same limit. In this section we
extend further the analysis performed in refs. [102] and [117] for the global PC-model
quantities WPC

∞ [ρ] and W ′PC∞ [ρ], by defining a local PC model for the energy density
and comparing it to the SCE reference.

By comparison of th PC expressions for the global integrand W∞[ρ] (3.48)-(3.49)
with the local definition (4.6) a local PC model can be identified

WPC
∞ [ρ] =

∫
dr ρ(r)wPC∞ [ρ](r) (4.26)

whereby the PC model tries to approximate the total electrostatic energy of an SCE
configuration by means of the PC cells (3.47). The energy density that derives from
this definition is

w̃PC∞ [ρ](r) =
1

N

N∑
i

Ecell([ρ]; fi(r)) (4.27)

If the total energy of a configuration is approximated by the energy of a single cell

N∑
i

Ecell([ρ]; fi(r)) ≈ NEcell([ρ]; r) (4.28)
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the energy density writes

wPC∞ [ρ](r) = Ecell([ρ]; r) (4.29)

From the exact SCE property (4.21) it shows that the integrated value
∫
dr ρ(r)w(r)

will not change upon the transformation (4.27)-(4.29). To determine the PC ex-
pression in the exchange-correlation hole gauge we compare to the SCE expressions
(4.18)-(4.20). In (4.20) the total electrostatic energy is invoked, similar to the PC
expression (4.27). Upon the gauge transform (4.21) of (4.20) to (4.18), the exchange-
correlation hole gauge is obtained. Hence, the gauge transformed PC energy density
(4.29) that is obtained from (4.27) should correspond to the exchange-correlation
hole gauge.

It is important to stress that the PC cell is not an approximation to the exchange-
correlation hole in the λ→∞ limit [105]. However, its electrostatic energy (electron-
background attraction plus background-background repulsion) is an approximation
to the electrostatic potential of the exchange correlation hole (4.8). This concept is
further clarified in the appendix A, where the case of the uniform electron gas at
extreme low density is treated explicitly.

From the cell energies (3.50) and (3.51), the approximate PC energy densities in
the gauge of the exchange-correlation hole follow

wPC-LDA
∞ (r) = − 9

10

(
4π

3

)1/3

ρ(r)1/3 (4.30)

wPC-GGA
∞ (r) = wPC-LDA

∞ (r) +
3

350

(
3

4π

)1/3 |∇ρ(r)|2
ρ(r)7/3

(4.31)

In figure 4.5 we compare the exact λ→∞ energy densities of (4.18) with the PC-
LDA and PC-GGA approximations of (4.30)-(4.31) for the He atom, the sphericalized
B and C atoms and for the Ne atom, using accurate Hylleras and quantum Monte Carlo
densities [158–160]. We see that the PC model becomes a rather good approximation
in the valence region of B, C and Ne, while being quite poor in the core region,
and especially at the nucleus. The PC-LDA energy density is actually a better local
approximation than the PC-GGA, except close to the nucleus. The PC-GGA performs
better globally (see table 4.1), but we clearly see that this is due to error compensation
between the core region and the inter-shell region. In the tail of the density the
PC-GGA energy density diverges. Notice that the exact SCE energy densities have
kinks (clearly visible in the insets of figure 4.5), which occur each time we have a
configuration with one of the electrons at infinity.

The approximations made in the PC model are i) neglecting the cell-cell inter-
action, and ii) assuming the uniform- or slowly varying electron gas density for the
background (4.30)-(4.31). At the nucleus, we can easily construct what would be the
“exact” PC cell, so that we can at least remove approximation ii), and check the effect
of approximation i) alone. The “exact” PC cell around the nucleus is the sphere Ω of
radius a, with ∫ a

0

dr 4πr2 ρ(r) = 1 (4.32)
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Figure 4.5: Energy density w∞[ρ](r) in the definition of the electrostatic potential of
the exchange-correlation hole. The exact SCE result of (4.18) is compared with the
PC-LDA and PC-GGA approximations of (4.30)-(4.31).

W∞ WPC-LDA
∞ WPC-GGA

∞

H− −0.569 −0.664 −0.559

He −1.498 −1.735 −1.468

Li −2.596 −2.983 −2.556

Be −4.021 −4.561 −3.961

B −5.706 −6.412 −5.650

C −7.781 −8.650 −7.719

Ne −19.993 −21.647 −19.999

Table 4.1: Global value W∞[ρ] =
∫
dr ρ(r)w∞[ρ](r) for small atoms at different levels

of approximation. The exact value is given by the SCE expression (4.18), while the
PC-LDA and PC-GGA values follow from (4.30) and (4.31), respectively.
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w∞(0) w
PC-LDA/GGA
∞ (0) wPC∞ (0)

H− −0.6825 −0.9671 −0.7157

He −1.6883 −2.1729 −1.6672

Li −2.2041 −3.4019 −2.6396

Be −3.1568 −4.6578 −3.6354

B −3.8230 −5.8995 −4.6190

C −4.7727 −7.1446 −5.6050

Ne −8.0276 −12.119 −9.5463

Table 4.2: Comparison of the energy density at the nucleus w∞[ρ](r = 0) in the
definition of the exchange-correlation hole for small atoms. The exact value w∞
corresponds to the SCE expression of (4.18), the value wPC-LDA/GGA

∞ is the PC local
density- or gradient expansion approximation of (4.30)-(4.31) equally, and wPC∞ is
the value from the “exact” PC cell of (4.33).

and the “exact” value of wPC∞ (r = 0) is

wPC∞ (r = 0) = −
∫

Ω

dr
ρ(r)

r
+

1

2

∫
Ω

∫
Ω

drdr′
ρ(r)ρ(r′)

|r− r′| (4.33)

In table 4.2 we compare the exact SCE values at the nucleus with the PC-LDA or
PC-GGA (they become equal at the nucleus) and the result of (4.33) for several atoms.
We see that the “exact” PC cell (4.33) is very accurate for N = 2: in fact, when the
reference electron is at the nucleus, the other one is at infinity so that the cell-cell
interaction becomes indeed zero. For N > 2 we see that the “smearing hypothesis,”
i.e. the assumption of negligible cell-cell interaction, leads to some errors, although
there is an improvement with respect to the PC-LDA and PC-GGA reducing the relative
error by about a factor 2. Along these lines one might try to construct an improved
PC model that performs locally better than the PC-GGA, which, as we have shown,
achieves good global accuracy at the price of error cancellation between different
regions of space.

4.6 Examination of the local Lieb-Oxford bound

Lieb and Oxford formulated a rigorous lower bound to the indirect part of the electron-
electron repulsion energy W̃ [Φ] associated with a given many-electron wavefunction
Φ [161,162]

W̃ [Φ] ≡ 〈Φ|V̂ee|Φ〉 − U [ρΦ] ≥ −C
∫

dr ρΦ(r)4/3 (4.34)

where ρΦ(r) is the density obtained from the wavefunction. The positive constant
C is rigorously known to have a value C ≤ 1.679 [162,163]. It has been suggested
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that a tighter bound can be obtained by taking the value of C that corresponds to the
low-density limit of the uniform electron gas, C ≈ 1.44 [164–166], since the bound
is known to be more challenged when the number of electrons increases [162] and
when the system has low density [167].

It is possible to translate the Lieb-Oxford (LO) bound into a lower bound for
exchange and exchange-correlation functionals [164,167]

Ex[ρ] ≥ Exc[ρ] ≥ −C
∫

dr ρ(r)4/3 (4.35)

simply because Ex[ρ] = Wλ=0[ρ] is the indirect Coulomb repulsion of the Slater
determinant of KS orbitals, and Exc[ρ] is the sum of the indirect Coulomb repulsion
of the physical wavefunction Wλ=1[ρ], plus the correlation correction to the kinetic
energy, which is always positive.

The way the LO bound is used in the construction of approximate functionals is,
usually (with the exception of ref. [168]), by imposing it locally (see, e.g., refs. [63,
169]). That is, a given approximate exchange(-correlation) functional EDFAx(c) [ρ] =∫
dr ρ(r) εDFAx(c) (r) is required to satisfy

εDFAx(c) (r) ≥ −C ρ(r)1/3 (4.36)

This is a sufficient condition to ensure the global bound (4.35), but it is by no means
necessary (see, e.g., ref. [170]). In other words, there is no proof that a local version
of the LO bound should hold. Actually, before even asking whether a local version of
the LO bound does hold or not, we need to understand to which definition (gauge) of
the energy density the local LO bound of (4.36) applies. In fact, since energy densities
are not uniquely defined, the inequality (4.36) should be satisfied only for a well
defined gauge: one can indeed always add a quantity to εDFAx(c) (r) that integrates to
zero and violates (4.36) in some region of space.

By our already presented considerations on the energy density we argue that: i)
the gauge of the local LO bound is the conventional one of the electrostatic energy of
the exchange-correlation hole, and ii) the local LO bound is then certainly violated,
at least in the tail region of an atom or a molecule, and in the bonding region of a
stretched molecule. The argument behind point i) is the following: For a given density
ρ, the wavefunction Φ[ρ] that maximally challenges the LO bound is the one that
minimizes the expectation 〈Φ[ρ]|V̂ee|Φ[ρ]〉 [119], i.e. by definition ΦSCE [ρ]. Hence,
we also have

Ex[ρ] ≥ Exc[ρ] ≥W∞[ρ] ≥ −C
∫
dr ρ(r)4/3 (4.37)

In section 4.2 we discussed the energy density associated with W∞[ρ] in the gauge
of the electrostatic potential of the exchange-correlation hole. We have also shown
that this energy density can be approximated by the PC model that considers the
electrostatic energy of a cell of positive charge ρ+(r) = ρ(r) around the reference
electron at r. The LDA version (4.30) of this approximation has exactly the same form
of the local LO bound (4.36). Moreover, the recently suggested value C ≈ 1.44 [165]
is remarkably close to the one of the PC-LDA model CPC ≈ 1.45. Notice the fact that
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Figure 4.6: Violation of the local form of the Lieb-Oxford bound for the stretched H2

molecule.

the PC model is in the gauge of the electrostatic energy of the exchange-correlation
hole, as follows from the properties of the strong-interaction limit of DFT, in particular
by (4.21). If the PC model is an approximation in this gauge, and if the LO bound is
locally equal to it, then conclusion i) should follow. Although this is not a rigorous
argument, but only a plausible one. Another way to arrive at the same conclusion
comes from the fact that the local form of the tightened LO bound corresponds to
approximate, in each point of space, the exchange-correlation hole with the one of the
extremely correlated (λ→∞) electron gas, as illustrated in appendix A. This would
imply, again, an energy density in the gauge of the exchange-correlation hole.

We then easily see that the local LO bound (4.36) is certainly violated in the tail
region of an atom or a molecule, where the exact energy density in the conventional
exchange-correlation hole gauge goes like −1/(2r), while the r.h.s. of (4.36) decays
exponentially. The local bound is also violated in the bond region of a stretched
molecule. As an example we show in figure 4.6 the energy densities of the stretched
H2 molecule for λ = 0 and λ = 1: with C = 1.44 the local bound is violated in the
bond region when the internuclear distance is R & 7 a.u., and with C = 1.67 when
R & 8 a.u. The bonding region of a stretched molecule as shown in our figure 4.6
is energetically unimportant. However, the corresponding KS potential in the same
region has important features for the proper description of bond breaking [144,171],
although this is expected to be a very non-local effect.

As concluding remark, we can say that it is very difficult, or maybe even impossible,
to find a rigorous local lower bound for the energy density. In fact, we have just seen
in section 4.4 that, at least for the harmonic external potential, it is not even true
that w1(r) ≥ w∞(r) everywhere. This means that even if we maximize the correlation
between the electrons, we do not construct a rigorous local lower bound, but only a
global one.
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4.7 Conclusions

We have derived an exact expression for the energy density in the strong-interaction
limit of DFT in the gauge of the exchange-correlation-hole electrostatic potential, and
we have computed it for small atoms and model quantum dots. A careful analysis of
the PC model showed that this approximation is formulated in the same gauge, and a
comparison with the exact results showed that it is locally reasonable in the atomic
valence region.

Our formalism also strongly suggests that the local version of the Lieb-Oxford
bound is formulated in the same conventional gauge of the exchange-correlation hole,
and it is then certainly violated.

We have also discussed the idea of a local interpolation along the adiabatic
connection. The values of the local energy density in the same gauge at λ = 0 and
λ =∞ are now available, either exactly or in an approximate way. Even if we have
found that in the harmonic external potential, the physical energy density is not
always in between the λ = 0 and the λ =∞ curves, the regions of space in which the
expected order is reversed are energetically not important. In the external Coulomb
potential we have found, instead, the expected behavior w∞(r) ≤ w1(r) ≤ w0(r)
everywhere.

For accurate local interpolations at least the slope at λ = 0, and possibly the next
leading term at λ =∞, are also needed in a local form and in the same gauge. A first
step towards the construction of a local slope at λ = 0 is to produce exact results for
this quantity, crucial to assess approximations. This can be achieved with the Legendre
transform techniques developed in refs. [45, 46]. A possible way to construct an
approximate local slope is by the use of the “extended Overhauser model” [172–174]
locally in a perturbative way. A local next leading term at λ = ∞ could also be
constructed by deriving the exact exchange-correlation hole corresponding to the
wavefunction of the zero-point oscillations, discussed in ref. [102].
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5.1 Kohn-Sham density functional theory with the
strictly correlated electrons functional

The SCE expressions (3.12) and (3.18) show how the effects of strong correlation,
captured by the λ → ∞ limit of Fλ[ρ] and rigorously represented by the highly
non-local functional V SCEee [ρ] (3.15), are exactly transferred into the one-body SCE
potential vSCE [ρ](r). This potential is exactly the one that compensates for the net
electronic repulsion of a classical point-charge distribution. The KS-SCE approach
to zeroth order consists in using this compensating potential to model the electronic
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interaction in the Kohn-Sham reference system, i.e.

vHxc[ρ](r) ≈ ṽSCE [ρ](r), ṽSCE [ρ](r) ≡ −vSCE [ρ](r) (5.1)

Notice that we have defined ṽSCE [ρ](r) = −vSCE [ρ](r), as here we seek for an
effective KS potential corresponding to the net electronic repulsion acting on an
electron at position r and not compensating for it. This idea was first presented by
Malet and Gori-Giorgi [5].

More rigorously, by considering the λ→∞ asymptotic expansion of the integrand
of (2.43) one obtains [102–104,117,128]

V∞ee [ρ] = V SCEee [ρ] +
V ZPEee [ρ]√

λ
+O(λ−p) (5.2)

where V ZPEee [ρ] is the zero-point energy (ZPE) (3.20), which takes small oscillations of
the electrons around their SCE equilibrium positions into account, and p ≥5/4 [102].
Setting V λee equal to this expansion for all λ results by virtue of (2.27) in the general
KS-SCE approximation to EHxc[ρ]

EHxc[ρ] ≈ V SCEee [ρ] + 2V ZPEee [ρ] + . . . (5.3)

When considering only the zeroth-order term of the λ→∞ expansion, i.e. EHxc[ρ] ≈
V SCEee [ρ], the zeroth-order KS-SCE method results with the corresponding functional
derivative

δEHxc[ρ]

δρ(r)
= ṽSCE [ρ](r) (5.4)

which also sets the arbitrary constant in the potential (3.7)-(3.12) by requiring

ṽSCE(|r| → ∞) = 0 (5.5)

for the finite systems considered here. This to align the highest occupied KS (HOMO)
eigenvalue with the exact chemical potential from the electron-deficient side εHOMO

= µ− = EN − EN−1 [175,176].
Taking the definition of the SCE functional V SCEee [ρ] (3.3) into account, the zeroth-

order KS-SCE is equivalent to an approximation of the HK functional (2.15) of the
form

min
Φ→ρ
〈Φ|T̂ + V̂ee|Φ〉 ≈ min

Φ→ρ
〈Φ|T̂ |Φ〉+ min

Φ→ρ
〈Φ|V̂ee|Φ〉

= Ts[ρ] + V SCEee [ρ]
(5.6)

Obviously, the minimizing wavefunctions for T̂ and V̂ee will be different: for the
non-interacting functional Ts[ρ] the minimizing wavefunction is usually a single
Slater determinant Φ → Ψ, whereby for the second minimization the minimizing
wavefunction is given by the SCE reference state Φ→ ΦSCE (3.10).

From the scaling properties of the functionals F [ρ], Ts[ρ] and V SCEee [ρ] [118,177]
it follows that the approximation (5.6) becomes accurate in the weak- and in the
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strong-interaction limits, while probably less precise in between. To use the scaling
relations one defines, for electrons in D dimensions, a scaled density

ργ(r) ≡ γDρ(γ r) , γ > 0 (5.7)

We then have [118,177]

F [ργ ] = γ2 F1/γ [ρ]

Ts[ργ ] = γ2 Ts[ρ]

V SCEee [ργ ] = γ V SCEee [ρ]

(5.8)

where F1/γ [ρ] means that the coupling constant λ in Fλ[ρ] (2.26) has been set to 1/γ.
We see that, both sides of (5.6) tend to Ts[ργ ] when γ → ∞ (high-density or weak-
interaction limit) and to V SCEee [ργ ] when γ → 0 (low-density or strong-interaction
limit).

The KS-SCE approach treats thus both the kinetic energy and the electron-electron
repulsion energy on the same footing, combining the advantages of KS-DFT with SCE-
DFT. It allows one to address systems in the weak- and strong-interacting regime, as
well as in the crossover regime. Standard KS-DFT emphasizes the non-interacting shell
structure, properly described through the functional Ts[ρ], but it misses the features
of strong correlation. SCE-DFT, on the contrary, is biased towards localized “Wigner-
like” structures in the density, described by V SCEee [ρ], and missing the fermionic
shell structure. Many interesting systems lie in between the weak- and the strong-
interaction limit, and their complex behavior arises precisely from the competition
between the fermionic structure embodied in the kinetic energy and the correlation
effects due to the electron-electron repulsion. By implementing the SCE potential in
the KS scheme, we let these two factors compete in a self-consistent solution of the
restricted KS equations with the SCE potential[

−1

2
∇2 + vext(r) + ṽSCE [ρ](r)

]
ϕi(r) = εi ϕi(r) (5.9)

which also follow from varying the KS-SCE functional (5.6) w.r.t. the single-particle
orbitals appearing in Ts[ρ].

Another neat property of the zeroth-order KS-SCE approach is that it yields al-
ways a lower bound to the exact ground-state energy. In fact, for any given ρ the
r.h.s. of (5.6) is always less or equal than the l.h.s., as the minimum of a sum is always
larger than the sum of the minima. As a consequence, for the ground state density
ρ = ρ0 we have the inequality

E[ρ0] = F [ρ0] +

∫
ρ0 vext ≥ Ts[ρ0] + V SCEee [ρ0] +

∫
ρ0 vext (5.10)

which becomes even stronger when one minimizes the functional on the r.h.s. within
the self-consistent KS-SCE procedure. This constitutes an important difference to the
variational wavefunction methods section 2.1.2, which, instead, provide an upper
bound to the exact ground state energy.
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Figure 5.1: The KS-SCE approximation from the point of view of the adiabatic
connection, section 2.2.3. We show typical Wλ[ρ] curves for a weakly correlated and
a strongly correlated system. The shaded areas represent the exchange-correlation
energy Exc[ρ] =

∫ 1

0
dλWλ[ρ]. The zeroth-order KS-SCE approximates Wλ[ρ] with its

value at λ→∞ for all λ, and is a good approximation for strongly correlated systems.

It is illustrative to represent the approximation made in KS-SCE graphically in
terms of the standard adiabatic connection of DFT. In figure 5.1 we show Wλ[ρ] as a
function of λ for a weakly and a strongly correlated system. The area drawn by Wλ[ρ],
the λ-axis and the verticals λ = 0 and λ = 1, gives the exchange-correlation energy
Exc[ρ]. Zeroth-order KS-SCE approximates Wλ[ρ] with its value at λ → ∞ for all λ.
This is evidently a good approximation only when the system is very correlated. In
the weak-correlation regime the approximation becomes of minor importance, since
here the essential accuracy of the KS-SCE method is provided by the non-interacting
kinetic energy as derived from the scaling relations (5.8).

The accuracy in the intermediate-correlation regime can not be assessed from
theoretical grounds and the impact of the approximation has to be studied by actual
self-consistent solutions of the KS equations (5.9). Similar systems to Hooke’s atom
of chapter 4 with tuneable correlation can be used for a systematic analysis. Here,
however, we restrict ourselves to one dimension. This sets a prototyping laboratory in
which the implementational effort remains limited, and that allows for an emphasis
on further functional development. One-dimensional systems of N electrons confined
in a harmonic external potential also serve as useful models for quantum wires,
where experimentally observable charge localizations occur as signatures of strong
correlation, and the KS-SCE method will be used in section 5.3.4 to describe this
localizations within DFT. A one-dimensional test laboratory for elementary chemistry
will be employed in section 5.4, where quantitative corrections to the zeroth-order
KS-SCE will be investigated as well.
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Figure 5.2: Schematic representation of the functional Wλ[ρ] as a function of λ for
the SCE approaches. Adding the zero-point term to the zeroth-order KS-SCE yields
an overcorrected KS-ZPE-SCE energy, including also the positive area. The simple ISI
approximation of (5.13)-(5.14) removes the excess energy by shifting the value of
Wλ[ρ] at λ = 0 to the exact exchange energy.

5.2 Higher-order corrections to zeroth-order KS-SCE

We have shown that the zeroth-order KS-SCE approximation of (5.6) corresponds to
setting the coupling-constant integrand of (2.28) to Wλ[ρ] = W∞[ρ], cf. figure 5.1.
The exact correction to the zeroth-order approach would be the sum of the kinetic
correlation energy Tc[ρ] plus the electron-electron decorrelation energy V dee[ρ] [126,
178]

F [ρ] ≡ Ts[ρ] + V SCEee [ρ] + Tc[ρ] + V dee[ρ]

Tc[ρ] = 〈Φλ=1[ρ]|T̂ |Φλ=1[ρ]〉 − Ts[ρ]

V dee[ρ] = 〈Φλ=1[ρ]|V̂ee|Φλ=1[ρ]〉 − V SCEee [ρ]

(5.11)

From the expansion (5.3) we identify to the order λ−1/2

Tc[ρ] + V dee[ρ] ≈ 2V ZPEee [ρ] (5.12)

and the KS-ZPE-SCE method results. It turns out that this correction is in general way
too large, as it includes the positive contribution to the integrand, coming from the
integrable divergence ∝ λ−1/2. See also figure 5.2.

In order to get a more realistic correction, we consider here a simplified interaction-
strength interpolation (ISI) on Wλ[ρ] (2.28) [104,128], which sets the value of Wλ[ρ]
at λ = 0 equal to its exact value, i.e. the exact exchange energy Ex[ρ] with the KS
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orbitals

W ISI−ZPE
λ [ρ] = W∞[ρ] +

W ′∞[ρ]√
λ+ a[ρ]

a[ρ] =

(
W ′∞[ρ]

Ex[ρ]−W∞[ρ]

)2
(5.13)

In this way, we remove the excess positive contribution, as shown in fig 5.2. We then
obtain the renormalized correction

Tc[ρ] + V dee[ρ] ≈ 2V ZPEee [ρ]
(√

1 + a[ρ]−
√
a[ρ]

)
(5.14)

This correction is size consistent only when a system dissociates into equal fragments.
A full size-consistent approximation requires a local interpolation along the adiabatic
connection, as already discussed in chapter 4 of this thesis.

A self-consistent solution of the KS equations with the ZPE-SCE functionals can
not be obtained, as the functional derivative of the ZPE energy is yet not accessible
(though it can be derived for N = 2 [179]). In section 5.4 this functionals will be
applied at the post-functional level on the converged zeroth-order KS-SCE solution.

5.3 Strong correlation in one-dimensional model
quantum wires

5.3.1 An overview

Carbon nanotubes, metallic-, semiconductor- and molecular nanowires can be identi-
fied as quantum wires. Among their common characteristics is a quantization effect
in conductance that shows off with wire diameters at or below nanometer scale. Due
to the low diameter compared to the electronic wavelength, electronic momentum is
only transferred along the longitudinal and a one-dimensonal model description is
appropriate. The quantization in conductance can then be readily explained by assum-
ing a harmonic confinement of the electrons, with the shape of the parabola related to
the length of the wire. Another quantum mechanical effect manifests in the so-called
2kF → 4kF crossover with increasing wire lengths, giving rise to charge localizations
in the electronic density. This crossover can be seen as strong-correlation effect, as in
long wires the electronic density is low and the Coulomb repulsion dominates over
the kinetic energy of the electrons.

Charge localizations – reminiscent of the low-density Wigner crystallization [180]
of the bulk electron gas and therefore commonly also referred to as Wigner lo-
calizations – have been observed experimentally in one-dimensional cleaved-edge
overgrowth structures [181] or in the transport properties of InSb nanowire quantum-
dots [182]. More recent experimental work clearly identified the formation of Wigner
molecules in a one-dimensional quantum dot that was capacitively coupled to an
atomic force microscope probe [183]. Wigner localization has also been investigated
in other one-dimensonal systems such as carbon nanotubes [184–186] (For a re-
view see, e.g., ref. [187]). Finally, regarding practical applications, Wigner-localized
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systems have been shown to be potentially useful, e.g., for quantum-computing
purposes [184,188].

A lot of previous theoretical work on Wigner localization in nanostructures has
focused on finite-sized quantum dots (see, e.g., refs. [189–194]), and the crossover
from liquid to localized states in the transport properties of the nanostructure has
been addressed [195,196].

When trying to model strongly correlated systems, the commonly employed meth-
ods encounter serious difficulties of different nature. E.g., the configuration interaction
(CI) approach, despite being in principle capable of describing any correlation regime,
is in practice limited to the study of small systems with only very few particles due
to its high computational cost. Such numerical challenges overwhelm even more in
the strong-correlation limit due to the degeneracy of the different quantum states
and the consequent need of larger Hilbert spaces in the calculations. The CI method
will be described in more detail and used below for benchmarking purposes. Other
wave-function methods, like quantum Monte Carlo [194,197–199] and density matrix
renormalization group [200], which rely to some extent on various approximations,
can treat systems larger than the CI approach, but are still computationally expensive
and limited to N . 102.

KS-DFT in contrast, highlights a computationally efficient approach for the treat-
ment of larger quantum systems. The currently available approximations for the ex-
change-correlation functional, however, fail to describe the strongly correlated regime
even at the qualitative level [133,194,201–204]. Allowing spin- and spatial-symmetry
breaking may yield reasonable total energies, without, however, capturing the physics
of charge localization in non-magnetic systems. Moreover, broken-symmetry solutions
often yield a wrong characterization of various properties and the rigorous KS-DFT
framework is partially lost (see, e.g., refs. [200,201,203]).

Because it is in principle an exact theory, KS-DFT should be able to yield the
exact energy and density even in the case of strong electronic correlation, without
artificially breaking any symmetry. However, when dealing with practical KS-DFT, the
KS non-interacting reference system might not be the best choice to address systems
with dominant electron-electron interaction. For many years, huge efforts have been
made in order to get a better characterization and understanding of the properties
of the exact Kohn-Sham reference system (see, e.g., refs. [45,46,133,144,148,153,
171,200,205–215]). All these works reflected the large difficulties encountered when
trying to obtain adequate approximations to describe strong correlation in the exact
KS theory [88].

A new approach for the treatment of strong correlation in DFT was proposed
in ref. [5] with the KS-SCE method as also described in section 5.1. Pilot tests of
the KS-SCE framework showed that it is able to capture the features of both, the
weakly and the strongly correlated regimes in model quantum wires, as well as in the
2kF → 4kF crossover occurring in between them. A computational cost comparable to
the one of standard KS-LDA was given. It has shown that the SCE functional yields a
highly non-local approximation for the exchange-correlation energy functional, which
is able to capture key features of strong correlation within the KS scheme without any
artificial symmetry breaking. In this chapter we extend the studies presented in ref. [5]
on one-dimensional model quantum wires, demonstrating once more the ability of
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the KS-SCE framework to describe strong-correlation phenomena. Conclusions on
the quantitative performance of the KS-SCE method can be drawn by comparison to
CI calculations, when quantum wires in different correlation regimes are considered.
Further comparison is made with the KS-LDA method.

5.3.2 A quantum wire model in one dimension

We considerN electrons in the one-dimensonal model of a quantum wire, as suggested
in refs. [204,216]

Ĥ = −1

2

N∑
i

∂2

∂x2
i

+

N∑
i,j>i

wb(|xi − xj |) +

N∑
i

vext(xi) (5.15)

in which the effective electron-electron interaction is obtained by integrating the
Coulomb repulsion on the lateral degrees of freedom of the physical wire [216,217],
and is given by

wb(x) =

√
π

2 b
exp

(
x2

4 b2

)
erfc

( x
2 b

)
(5.16)

The parameter b fixes the thickness of the wire, set to b = 0.1 throughout this work,
and erfc(x) is the complementary error function. The interaction wb(x) has a long-
range coulombic tail, wb(x → ∞) = 1/x, and is finite at the origin, where it has a
cusp. As in ref. [204], we consider an external harmonic confinement in the direction
of motion of the electrons

vext(x) =
1

2
ω2x2 (5.17)

The wire can be characterized by an effective confinement-length parameter L defined
by

ω ≡ 4

L2
(5.18)

5.3.3 Supplemental computational approaches

CI method In the configuration-interaction calculations, the full many-body wave-
function is expanded as a linear combination of Slater determinants, constructed
with the non-interacting harmonic oscillator orbitals. A matrix representation of the
Hamiltonian in this basis is then numerically diagonalized to find the eigenstates
of the system. The number of possible ways to place N particles in a given set of
orbitals increases rapidly as a function of N , such that only small particle numbers
are tractable. For our studies we could perform calculations for N ≤ 5. Also, the
stronger the interaction, the more basis orbitals are generally required to obtain a
good approximation. For the present physical systems with the largest length L, about
20–40 orbitals were needed to get converged solutions, which resulted in Hilbert
space dimensions in the range 105–106. For a more detailed description of the method,
see refs. [218,219].
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KS-LDA method KS-DFT calculations were carried out with the local density ap-
proximation (LDA) using the exchange-correlation energy per particle εxc = εx + εc
for a one-dimensonal homogeneous electron gas, with the renormalized Coulomb
interaction wb(x), as detailed in ref. [204]. The exchange term εx is given by

εx(rs) =
1

2

∫ +∞

−∞

dq

2π
vb(q) [S0(q)− 1] (5.19)

where vb(q) is the Fourier transform of the interaction potential, S0(q) is the non-inter-
acting static structure factor, and rs ≡ 1

2ρ [220]. To increase the numerical stability,
we have interpolated between the Taylor expansions of εx(rs) at small and large rs up
to order 14. For the correlation term we have used the results of Casula et al. [221],
who have parametrized their QMC data as

εc(rs) = − rs
A+Brγ1s + Cr2

s

ln (1 +Drs + Erγ2s ) (5.20)

where the different parameters are given in table IV of ref. [221] for several values of
b.

5.3.4 KS-SCE treatment of one-dimensional model quantum
wires

We have implemented the zeroth-order KS-SCE method in one-dimension by self-
consistently solving the KS equations with the SCE potential ṽSCE [ρ](r) (5.9) in
a spin-restricted framework. With the co-motion functions for one dimension, cf.
section 3.2, the SCE potential is evaluated by integrating its derivative

ṽ′SCE(x) =

N∑
i=2

w′b(|x− fi(x)|)sgn(x− fi(x)) (5.21)

with the boundary condition ṽSCE(|x| → ∞) = 0, and the interaction wb(x) from
(5.16). The corresponding SCE energy writes

V SCEee [ρ] =
1

2

∫ ∞
0

dx ρ(x)

N∑
i=2

wb(|x− fi(x)|) (5.22)

Figure 5.3 shows the electron densities for N = 4 and different effective con-
finement lengths L = 2ω−1/2, obtained with the KS-SCE, the CI and the KS-LDA
approaches. One can see that the three methods show qualitative agreement in
the weakly-correlated regime with L = 1. The densities have N/2 peaks, given by
Friedel-like oscillations with wave number 2keffF , where keffF = πρ̃/2 is the effective
Fermi wavenumber, determined by the average density in the bulk of the trap ρ̃.

As the confinement length of the wire increases, L = 15, 70, the interactions start
to dominate. Whereas the KS-SCE and the CI results are still in qualitative agreement
for this correlation regimes, the KS-LDA clearly provides a physical wrong description
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Figure 5.3: Electron densities ρ(r) for N = 4 and L = 1, 15 and 70 obtained with the
KS-SCE, CI and KS-LDA approaches. The results are given in units of the effective
confinement length L = 2ω−1/2.
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of the systems. Indeed one can see that the densities obtained from the KS-SCE and
the CI methods develop a four-peak structure, corresponding to charge localization
and indicating that the system enters the crossover between the weakly and the
strongly correlated regimes (the 2kF → 4kF crossover), and the KS-LDA yields a flat
density. This is a typical error of local and semi-local density functionals that leads to
difficulties in the description of, e.g., systems close to the Mott insulating regime and
in bond breaking (yielding wrong molecular dissociation curves, see also section 5.4).
In such cases, better total energies are obtained by spin-symmetry breaking. This, as
already discussed, does not yield a satisfactory physical description of such systems,
missing many key features and giving a wrong characterization of several properties
(see, e.g., refs. [200,201,203]).

In order to obtain charge localization within the restricted KS scheme, the self-
consistent KS potential must build “bumps” (or barriers) between the electrons. These
barriers are a very non-local effect and are known to be a key property of the exact
Kohn-Sham potential [144,171]. From figure 5.4 we see that also the KS-SCE method
shows the above-mentioned barriers in the self-consistent KS potentials, which we
plot together with the corresponding densities for N = 4 and N = 5 for L = 70. One
can see that each of the N peaks in the density corresponds to a minimum in the KS
potential, which is separated from the neighboring ones by barriers. At the maxima
the KS potential has a discontinuous, but finite, first derivative [120]. It arises due
to the classical nature of the SCE potential, and it is not expected to appear in the
exact KS potential (indeed, it does not appear in any of the available calculations of
the “exact” KS potential obtained by inversion).

One can also parallel our results with the recent work on the KS exchange-
correlation potential for the one-dimensonal Hubbard chains [215,222,223]. Vieira
[215] has shown that the exact exchange-correlation potential for a one-dimensional
Hubbard chain with hopping parameter t and on-site interaction U , obtained by
inversion from the exact many-body solution, always oscillates with frequency 4kF ,
while the density oscillations undergo a 2kF → 4kF crossover with increasing
U/t. The crossover in the density is thus due to the increase in the amplitude
of the exchange-correlation potential oscillations. In figure 5.5 we show the KS-SCE
exchange-correlation potentials for N = 4 electrons in the weakly (L = 2) and
strongly (L = 70) correlated regimes together with the densites and the occupied
KS eigenvalues. We see that the KS-SCE self-consistent results are in qualitative
agreement with the findings of ref. [215]: the oscillations in the exchange-correlation
potential have essentially a frequency 4kF also in the weakly correlated case, with
amplitude that increases with increasing L (due to the scaling (5.8), the parameter L
plays here a role similar to U/t for the Hubbard chain). In the two lower panels of the
same figure we also further clarify the 2kF → 4kF crossover in the KS framework: the
4kF regime in the density oscillations occurs when the barriers in the total KS potential
(due to the large oscillations of the xc potential) are high enough to accommodate
the KS eigenvalues. Classically forbidden regions inside the trap are therefore created
moderating the density crossover.

In table 5.1 we report the total energies obtained with the three approaches,
KS-SCE, CI and KS-LDA, for different values of the parameters L and N . It can be
seen that in the weakly correlated regime, represented here by L = 1 and 2, the error
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Figure 5.4: Self-consistent KS potentials vKS(r) obtained with the KS-SCE method
for N = 4 and N = 5, with effective confinement length L = 70 (blue solid lines).
The corresponding densities ρ(r) are also shown (red dotted lines). Notice that for
the sake of clarity only the results for x > 0 are shown. The results are given in units
of the effective confinement length L = 2ω−1/2.
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Figure 5.5: Top panel: the self-consistent KS-SCE exchange-correlation potential
vxc(r) for N = 4 at weak correlation L = 2 and strong correlation L = 70. In the inset
the oscillating part of the exchange-correlation potential at L = 2 is enlarged. Both
potentials are shifted w.r.t. each other, the usual asymptotic limit for each one is 0.
Middle panel: the total self-consistent KS-SCE potential vKS(r) (blue, solid line), the
corresponding density ρ(r) (red dotted line), and the two occupied KS eigenvalues
(green dashed horizontal lines) for the weakly correlated L = 2 wire. In this case we
see that in the KS system there are no classically forbidden regions inside the trap.
Bottom panel: the same as in the middle panel for the strongly correlated L = 70 wire.
In this case we clearly see the classically forbidden regions inside the trap created by
the barriers in the SCE potential. The results are given in arbitrary units.
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N L EKS-SCE ECI EKS-LDA

2 2 1.81 2.49 2.59

2 15 0.0942 0.106 0.130

2 70 0.0112 0.0115 0.0182

4 1 25.08 28.42 28.57

4 2 8.46 10.60 10.68

4 15 0.491 0.541 0.580

4 70 0.0602 0.0629 0.0771

5 15 0.787 0.871 0.915

5 70 0.099 0.102 0.121

Table 5.1: Total ground-state energies obtained with the KS-SCE, full-CI and KS-LDA
approaches for different values of the particle number N and effective-confinement
length L = 2ω−1/2.

made by the KS-SCE approach is larger than the one corresponding to the KS-LDA.
The results also clearly show that, as previously discussed, KS-SCE is always a lower
bound to the total energy. As the systems become more correlated with increasing L,
the KS-SCE and the CI results approach each other, whereas the values given by the
KS-LDA are less accurate, similar to the corresponding densities of figure 5.3.

The KS-SCE method is, in all respects, a standard KS formalism with a highly
non-local exchange-correlation functional, whose functional derivative yields a local
multiplicative KS potential. We can thus compare the highest occupied KS eigenvalue
with the exact ionization potential. This is done in table 5.2 where we compare the KS-
SCE and the KS-LDA eigenvalues with the accurate ionization potentials EN−1 −EN ,
calculated from the total energies of the CI method. Notice that ṽSCE(r) as an
approximate vHxc(r) has the right asymptotics in the limit |r| → ∞ as can be implied
from (5.21). Hence, the KS-SCE gives good results also in the weaker correlated
regimes. KS-LDA, as commonly known, yields too high eigenvalues due to the too fast
exponential decay of the exchange-correlation potential for |x| → ∞.

The numerical cost of the CI method increases exponentially with the number of
particles, and this limitation becomes stronger as correlation starts to dominate. In
the calculations reported above, for the N = 5, L = 70 case we diagonalized a matrix
where the eigenvectors had a dimension of about 3.5 × 105. While it is technically
possible to treat larger matrices, the rapid growth of the basis size still efficiently
limits the number of particles one can handle. (For N = 6 electrons, using the same
basis orbitals, the corresponding dimension is roughly 2.6× 106.) The KS-SCE method
in one-dimenson, on the contrary, has a numerical cost comparable to the one of
KS-LDA, therefore allowing to study strongly correlated systems with much larger
particle numbers. In figure 5.6 we show the electron densities and corresponding
KS potentials obtained with the KS-SCE method for N = 8, 16 and 32, for different
values of L: in the upper two panels we see how, at fixed number of particles N = 8,
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N L −εKS-SCE
HOMO ∆ECI −εKS-LDA

HOMO

2 2 1.65 1.99 2.56

2 15 0.104 0.097 0.263

2 70 0.0126 0.0111 0.04087

4 1 11.26 11.86 12.56

4 2 4.08 4.65 5.02

4 15 0.248 0.256 0.453

4 70 0.0318 0.0304 0.06909

5 15 0.325 0.330 0.539

5 70 0.0408 0.0391 0.08172

Table 5.2: Same as table 5.1 for the highest occupied KS eigenvalues εHOMO obtained
from KS-SCE and KS-LDA with the full-CI values for ∆E = EN−1 − EN .

the bumps in the KS potential and the amplitude of the density oscillations become
larger with increasing L. For fixed effective confinement length L = 150, we see from
the lower three panels how an increasing particle number N leads to less pronounced
features of strong correlation, according to the scaling (5.8).
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Figure 5.6: Ks-SCE electron density ρ(r) (red) and corresponding potential vKS(r)
(blue) for different particle numbers N and effective confinement lengths L. As in
figure 5.4, only the results for x > 0 are shown. The results are given in arbitrary
units.

5.3.5 Conclusions

We have used the exact strong-interaction limit of the Hohenberg-Kohn functional
to approximate the exchange-correlation energy and potential of KS-DFT. The ob-
tained zeroth-order KS-SCE approach was used subsequently to address quasi-one-
dimensional quantum wires in the weak-, intermediate- and strong-correlation regime,
comparing the results with those obtained from CI and KS-LDA runs.

In the weakly correlated regime, the three approaches give qualitatively similar
results, with electronic densities showing N/2 peaks, associated with the double
occupancy of the single-particle levels that dominate the system. In this regime,
KS-LDA performs overall better than KS-SCE. As correlations become dominant, the
KS-SCE and the CI densities start to develop additional maxima, corresponding
to charge-density localization, whereas the KS-LDA provides a qualitatively wrong
description of the system, yielding a very flat and delocalized density.
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For an accurate method in the intermediate-correlation regime corrections to
the KS-SCE method are required. This corrections can follow the same hierarchy
as conventional DFAs, meaning local, semi-local and fully non-local corrections to
KS-SCE can be explored. An example of a local correction will be introduced in
chapter 7 of this thesis. To improve the energy estimate at least at a post-functional
level the ZPE-SCE functionals can be used, as done in the next section.

The well-known “bumps” show up in the SCE potential of the KS-SCE approach and
are responsible for the proper description of charge localization in strongly correlated
wires. Moreover, the associated KS-SCE exchange-correlation potential shows the
right asymptotic behavior, yielding accurate chemical potentials across the entire
correlation range.

5.4 Strong correlation in one-dimensional models for
elementary chemistry

5.4.1 An overview

The applications of the KS-SCE method to one-dimensional model quantum wires have
shown that the SCE exchange-correlation potential is able to describe the physics of
strong correlation within the restricted KS non-interacting system. One can thus ask,
if this formalism also accurately describes chemical systems, especially in situations
where standard DFAs fail. Examples are provided by negative ions, that fall in the
intermediate-correlation regime, and stretched bonds, where strong correlation is
significant.

Before venturing into the challenging task of an implementation of the SCE
functional (or approximations thereof) for general three-dimensional systems, we can
explore the relevance of this functional already in one dimension. Models for simple
chemical systems are employed, which have recently been shown to be a useful testing
ground for functionals in a chemistry context [224,225], offering a reasonably close
one-dimensional description of their three-dimensional counterparts. For comparison
the KS-SCE method is solved self-consistently along with the DMRG, full-CI, KS-LDA
and KS-LSDA methods. The ZPE corrections to the SCE functional are evaluated at a
post-functional level on the KS-SCE solution.

5.4.2 Chemistry models in one dimension

One-dimensional models for different atoms, ions and for the H2 molecule are given
in refs. [204,216]. For N electrons the Hamiltonian reads

Ĥ = −1

2

N∑
i

∂2

∂x2
i

+

N∑
i,j>i

vsoft(|xi − xj |) +

N∑
i

vext(xi) (5.23)
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where vsoft(x) is the soft-Coulomb interaction1

vsoft(x) =
q1q2√
1 + x2

(5.24)

that is also used for the electron-nuclei interaction in vext(x), and the charges q1 and
q2 are given w.r.t. the electrons/nuclei. For the calculations presented here we have
considered nuclear charges q =1, 2, 3 and 4, corresponding to the elements H, He, Li
and Be. In each case we have also studied different ionic species. Finally, for the H2

molecule, we have considered interatomic separations RH−H in the range between 0
and 20 atomic units.

5.4.3 Supplemental computational approaches

We validate the KS-SCE method by comparing it with the density matrix renormaliza-
tion group (DMRG) method as described in ref. [224]. For the H2 potential energy
curve, we have also carried out full-CI calculations on a numerical grid. For further
comparison, calculations with KS-LDA in both the spin-restricted (LDA) and spin-
unrestricted (LSDA) formulations were performed. The parametrization of the L(S)DA
exchange-correlation functional with soft-coulomb interaction is taken from ref. [225].

5.4.4 KS-SCE treatment of one-dimensional atoms and ions

Total energies and ionization potentials for the elements H, He, Li and Be in their neu-
tral and ionic configurations can be obtained with the same numerical implementation
of the KS-SCE method as in the section above. One therefore only has to replace the
external potential and the electronic interaction in (5.21)-(5.22) by their correspond-
ing soft-coulomb counterparts from (5.24). The post-functional calculations with the
ZPE-SCE functionals on the converged KS-SCE solution were undertaken within the
Wolfram Mathematica environment [155].

Table 5.3 shows the total energies for different atomic elements, comparing the
results obtained with the KS-SCE, DMRG and KS-L(S)DA approaches. We see that
KS-SCE in almost all cases largely underestimates the total energies, except for the
N = 1 systems, for which it is exact. It provides a lower bound to the total energy
that is not very tight, and resulting in an accuracy worse than the one of L(S)DA. This
is not surprising, as the considered systems fall in the intermediate-correlation regime,
where it has already been shown that quantitative accuracy can not be expected from
the KS-SCE method. Adding the bare ZPE correction of (5.12) yields energies way too
high, as discussed in section 5.2: e.g., for Li we obtain −3.66 H and for Be −5.92 H.
The ISI-ZPE correction of (5.13), instead, improves the results consistently, getting
much closer to the DMRG calculations than L(S)DA.

Particularly interesting are the negative ions, which are a notorious problem
in approximate KS-DFT. Similarly to the three-dimensional case, the anions are all
unbound in L(S)DA, while KS-SCE overbinds, yielding bound systems also for He− and
Li−, which are unbound in DMRG. Notice that within a Hartree-Fock description and

1The regular Coulomb interaction has to be avoided, as due to the divergence in the Coulomb interaction
the Hartree energy U [ρ] would diverge too, not allowing for an KS-LDA treatment of this systems.
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E
KS-LDA

E
KS-LSDA

E
DMRG

E
KS-SCE

E
ISI−ZPE−SCE

H −0.60 −0.65 −0.67 −0.67 −0.67

H− - - −0.73 −0.89 −0.75

He −2.20 −2.20 −2.24 −2.38 −2.24

He− - - - −2.42 −2.21

He+ −1.41 −1.45 −1.48 −1.48 −1.48

Li −4.16 −4.18 −4.21 −4.43 −4.21

Li− - - - −4.51 −4.17

Li+ −3.85 −3.85 −3.90 −4.02 −3.90

Li2+ −2.26 −2.30 −2.34 −2.34 −2.34

Be −6.76 −6.76 −6.79 −7.12 −6.77

Be+ −6.39 −6.41 −6.45 −6.65 −6.45

Be2+ −5.56 −5.56 −5.62 −5.72 −5.61

Be3+ −3.13 −3.18 −3.21 −3.21 −3.21

Table 5.3: Total ground state energies obtained with the different approaches. The
DMRG data is taken from ref. [224].

the one-dimensional model settings employed here, H− is predicted to be found bound
(EHFH− = −0.69 and εHFHOMO,H− = −0.05). This is in contrast to the HF treatment of
three-dimensional H−, and care has to be taken when inferring from one to three
dimensions. An extended study of the anion binding in the He isoelectronic series
in three dimensions with the KS-SCE method will be presented in chapter 7 of this
thesis. The inclusion of the ISI-ZPE term correctly predicts H− to be bound (with a
rather good energy) and He− and Li− to be unbound (as their energy becomes higher
than the one of the corresponding neutral system). Notice also that in contrast to the
findings in ref. [225], where the one-dimensional He− and Li− were reported to be
bound although the value for the energy of Li− was higher than the one of Li, with
DMRG we found these two one-dimensonal anions to be unbound.

Table 5.4 compares the HOMO eigenvalues with the ionization energies obtained
from DMRG. We see that the KS-SCE HOMO yields again quite accurate estimates of
the ionization energies, thanks to the right asymptotic behavior of the SCE potential.
Since we applied the ISI-ZPE correction only at the postfunctional level, there are no
corrected HOMO eigenvalues.

5.4.5 KS-SCE treatment of the one-dimensional H2 molecule

We now turn to a paradigmatic case example for strong correlation in molecular
compounds, given by the stretched H2 molecule. From theoretical grounds it can
be already said that the KS-SCE method will yield the correct dissociation limit (it
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−εKS-LDA
HOMO −εKS-LSDA

HOMO ∆EDMRG
N=1,2 −εKS-SCE

HOMO

H 0.35 0.41 0.67 0.67

H− - - 0.06 0.089

He 0.48 0.48 0.75 0.72

He+ 1.12 1.18 1.48 1.48

Li 0.14 0.17 0.31 0.32

Li+ 1.24 1.24 1.56 1.50

Li2+ 1.95 2.00 2.34 2.34

Be 0.16 0.16 0.34 0.34

Be+ 0.60 0.63 0.83 0.81

Be2+ 2.06 2.06 2.41 2.34

Be3+ 2.81 2.86 3.21 3.21

Table 5.4: Same as table 5.3 for the ionization energies (using the HOMO eigenvalue
εHOMO for the DFT approaches). The DMRG values are given by ∆E = EN−1 − EN
[224].

is size-consistent and self-interaction free). When the dissociation limit is left by
positioning the nuclei closer together, the intermediate-correlation regime is entered
again, and corrections to the zeroth-order KS-SCE approach become relevant.

Figure 5.7 shows the dissociation energy curves for the considered methods. One
can see that, whereas the KS-LDA, KS-LSDA and HF energies are relatively close to
the CI values near equilibrium, the KS-SCE approach yields a large error due to its
overestimation of the electronic correlation. As the interatomic distance increases,
one can see that the spin-restricted LDA and HF energies as usual become too positive.
The KS-SCE result becomes now increasingly more accurate, tending to the exact
dissociation limit where the KS-SCE approach adequately captures the effects of strong
correlation. In total is the binding energy error of the KS-LDA approach comparable
to the one of the KS-SCE.

In the same figure we also show the energy curve when the full ZPE correction
and the renormalized ISI-ZPE corrections are added, at a post-functional level, to
the zeroth-order KS-SCE energies. One can see that the addition of the bare ZPE
yields again too high energies. The correction by the ISI-ZPE, instead, gives very good
results for RH−H . 4 a.u, but displays a “bump” in the potential energy curve, which
now tends from above to the exact dissociation limit, reached only at RH−H & 20.

Figure 5.8 shows the electronic densities obtained with the KS-SCE, KS-LDA and
full-CI approaches for different interatomic separations RH−H. One can see that for
the near-equilibrium configuration RH−H = 1.5 at the bond midpoint, the KS-SCE
density is slightly less peaked due to the above-mentioned overestimation of the
correlation, leading to a too diffuse density in the self-consistent competition of
kinetic- and electronic energy in the KS-SCE functional (5.6). The KS-LDA approach
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Figure 5.7: Dissociation energy curves for H2 with several approaches.

shows very good agreement with the exact result at small bond distances. As the
interatomic separation increases to RH−H = 5, the KS-LDA largely overestimates the
density at the bond midpoint, clearly reflecting its inability to properly describe the
molecular dissociation process. This is due to self-interaction errors and the entailed
delocalization error in the LDA. The KS-SCE approach, instead, shows an improving
tendency in the direction of the exact result, in accordance with the energy curve of
figure 5.7. Finally, in the dissociation limit RH−H = 15, the agreement between the
KS-SCE and CI densities is excellent, whereas the spin-restricted KS-LDA density is
still too delocalized.

The rapid decrease of the exact density at the bond midpoint with increasing
atomic separations RH−H is related to the presence of a barrier in the KS potential,
the same barrier as observed in section 5.3.4 [144,171]. In figure 5.9 the KS potential
for the H2 molecule and is shown for various approaches. The exact barrier has a
component that is known to saturate for large internuclear distances RH−H, with a
height determined by the ionization potential [171]. This component is due to the
kinetic correlation energy [144,171], and is consequently not captured by the SCE
functional, as it lacks the kinetic energy contribution. The KS-SCE barrier therefore
decreases when RH−H increases, and becomes small at large RH−H. However, at large
internuclear distances, the energetic contribution of the barrier is negligible, and even
a very small barrier (as the one obtained in KS-SCE) is enough to get an accurate
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Figure 5.8: Densities for the H2 molecule corresponding to different interatomic
separations obtained with the KS-SCE, KS-LDA and full-CI approaches.

localized density with the correct energy at dissociation. In KS-LDA we see at large
RH−H a barrier localized on the atoms rather than in the bond midpoint. Due to the
locality of the LDA potential a barrier in the bond midpoint can not arise, as the LDA
potential always follows the density profile.
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for the one-dimensonal H2 molecule.

5.4.6 Conclusions

While for low-dimensional nanodevices the KS-SCE approach is very accurate in the
strong-correlation regime [226,227], and therefore offering an original DFT tool for
the realistic modeling of such systems, chemical systems are usually not close enough
to the strong-interaction regime and total energies are underestimated within KS-SCE.
We see, however, that the SCE functional is able to bind anions, and to capture the
strong correlation of a stretched bond, both situations in which traditional DFAs
fail. Due to the right asymptotic properties of the SCE potential, the KS-SCE HOMO
always yields an accurate estimate for ionization energies. With a correction that is
renormalized by exact exchange, the post-functional ISI-ZPE is finally able to yield
accurate results for total energies, predicting the delicate physics of negative ions.

Overall, it seems promising to use the SCE physics as an ingredient for functional
approximations. An exact evaluation of the co-motion functions in the general three-
dimensional case might turn out to be too demanding, but it should be possible
to build approximate co-motion functions, or, more generally, non-local functionals
inspired by the SCE mathematical formalism.
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It seems also clear that the accuracy of KS-SCE is somewhat complementary to
the ones of standard functionals, so that corrections to SCE either including exact
exchange, or based on standard approximations can be pursued in the future. An LDA
correction to the SCE functional will be considered in chapter 7 of this thesis.



Chapter 6

The Derivative Discontinuity in
the Strong-Interaction Limit of
Density Functional Theory

A. Mirtschink, M. Seidl and P. Gori-Giorgi
“The derivative discontinuity in the strong-interaction limit of density functional theory”

Phys. Rev. Lett. 111, 126402 (2013)

6.1 An overview

Exact KS-DFT has many weird and counterintuitive features often missed by the
available approximations. One of the weirdest and most elusive of these features is
the derivative discontinuity of the exact exchange-correlation energy functional at
integer particle numbers N [228], which has been an incredibly long-debated issue
[116,214,229–237] because its formal derivation relies on some (very reasonable)
assumptions. This discontinuity is a shift of the exact KS potential by a constant
∆xc when to an N -electron system even a only very tiny fraction η of an electron
is added, aligning the chemical potential of the non-interacting KS system to the
exact, interacting, one. An illustration can be found in figure 6.1. The derivative
discontinuity is crucial for the KS-DFT description of some physical properties. E.g.,
it gives the difference between the KS gap and the fundamental conductance gap
[238–240], it allows for a correct dissociation of molecular bond [133, 228], and
it is required for the proper modeling of long-range charge-transfer excitations in
time-dependent DFT [241–243]. It also plays a significant role in quantum transport,
especially to capture the physics of the Coulomb blockade and the Kondo effect
[208,209,244–246]. These are all cases in which the standard approximations, which
miss the discontinuity jump in the potential, work poorly. Corrections based on the

71
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Figure 6.1: Schematic illustration of the spin-restricted (same potential for spin-↑
and spin-↓ electrons) KS spectrum when adding a tiny fraction η of an electron to
an N -electron system. Top panel: when the KS N -electron system is open shell, the
whole KS spectrum “jumps” by a positive constant ∆xc = IN +AN , which aligns the
KS highest occupied eigenvalue (HOMO) to the electron affinity AN = EN+1 − EN .
Bottom panel: when the KS system is closed shell, the positive constant ∆xc aligns the
KS N -electron lowest unoccupied orbital (LUMO) to the exact affinity AN . In both
cases, in the exact KS system the HOMO is equal to the many-body chemical potential.

explicit enforcement of the discontinuity have been often proposed as a practical
solution (see, e.g., refs. [247–250]).

For the study the exchange-correlation derivative discontinuity an extension of the
KS reference to fractional electron numbers is performed. After briefly reviewing the
essential background material of this extension, we present the rigorous generalization
of the SCE functional to fractional electron numbers. We investigate further on the
derivative discontinuity in the self-consistent solution of the KS equations with the SCE
functional, for the case of strong correlation in one-dimensional and three-dimensional
harmonic confinements, by analyzing the HOMO eigenvalue for an extended range
of particle numbers. As our results follow without imposing any ad hoc constraint,
they also support the assumptions that were made to derive the existence of the
derivative discontinuity [228]. The SCE formalism provides therefore insight, that can
be used for the construction of approximate functionals with an inherent derivative
discontinuity.
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6.2 Fractional particle numbers in KS-DFT

At zero temperature, open systems with fluctuating particle numbers have been first
introduced in the KS framework by considering statistical mixtures [228]. When
dealing with DFT for quantum mechanical systems, we can work with pure states
in which a degenerate system is composed by well separated fragments, and one
focuses on the energy and density of one of the fragments alone [132, 135, 251].
A very simple example is the stretched H+

2 molecule [133, 214], in which on each
nucleus we find, on average, 1/2 electrons. A key point to prove the existence of
the derivative discontinuity is the (empirical) observation that the energy EN of an
integer electron number system in a given external potential is a monotonic and
convex function, i.e. EN ≤ 1

2 (EN+1 +EN−1). This implies that for fractional electron
numbers Q = N + η (with 0 ≤ η ≤ 1), the minimizing many-electron ground state
energy EQ and density ρQ(r) lie on the connecting line between the values at the two
adjacent integers

EN+η = (1− η)EN + η EN+1

ρN+η(r) = (1− η)ρN (r) + η ρN+1(r)
(6.1)

In exact KS theory the eigenvalue of the highest occupied orbital (HOMO) εHOMO

is the derivative of the total energy of (6.1) w.r.t. the particle number Q [228,252]

∂EQ
∂Q

= εHOMO (6.2)

Thus, the exact εHOMO is constant between any two adjacent integers (say, N and
N + 1) and equal to the interacting chemical potential EN+1 − EN , jumping to a
different value when crossing an integer. This step-like behavior of the KS εHOMO is
not captured by the standard approximate functionals (see, e.g., refs. [251,253,254]),
unless imposed a priori via additional constraints in a spin-unrestricted framework, as,
e.g., in refs. [247,248,250]. The alignment of the exact KS HOMO eigenvalue with
the interacting chemical potential to a shift of the exact KS one-body potential by a
constant ∆xc (the derivative discontinuity) when crossing an integer particle number,
vs[ρN+ ](r)− vs[ρN− ](r) = ∆xc (cf. figure 6.1).

6.3 Extension of the SCE formalism to fractional elec-
tron numbers

A generalization of the SCE formalism to non-integer electron numbers is not obvious,
because in the SCE energy expressions

V SCEee [ρ] =
1

2

∫
dr ρ(r)

N∑
i=2

w(r− fi(r)) (6.3)

=

∫
dr
ρ(r)

N

N∑
j>i

w(fi(r)− fj(r)) (6.4)
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the sums run over the integer electron number N , requiring always an integer number
of co-motion functions fi(r) (w(x) depicts the interaction of choice, which , e.g., in
the three-dimensional case is the usual Coulombic one w(x) = 1/|x|). To proceed in a
rigorous way [88,132,133,135,214], we employ the fact that the exact SCE solution
in one-dimensional systems can be found analytically to arbitrary integer particle
number and symmetry, and analyze in the following a well separated Q-electron
fragment inside a degenerate system with total integer electron number M . An
example of such a degenerate system is provided by figure 6.2. Though the analysis is
undertaken in one dimension, the main findings and conclusions should also hold for
two- and three-dimensional systems [224]. Indeed, we have also performed a three-
dimensional self-consistent calculation for a spherically symmetric density, for which
we can deduce the fractional SCE solution from our one-dimensional construction,
finding similar results.

Before elaborating on our analysis, we already note that it is crucial to evaluate
V SCEee [ρ] from (6.3), as the sum in the alternative expression (6.4) for the integer-
M electron system does not decompose into equal sums of isolated fragments (the
interaction w(fi(r)−fj(r)|) between two electrons on a given fragment may contribute
significantly to the integral when x in the region of another fragment). The first
expression demonstrates the size consistency of V SCEee [ρ].

One dimension In the illustrated example of figure 6.2, we have solved the SCE
problem for M = 5 electrons, for a density made of two well-separated identical
fragments, each integrating to Q = 2.5 = N + 0.5 particles. We have then studied the
isolated SCE solution on one fragment, indicated in figure 6.2 by black circles. Here
the positions fi(x) of the other 4 electrons are shown as a function of the position
x of the first electron. We see that two adjacent strictly correlated positions fi(x)
and fi+1(x) on the fragment still satisfy the condition of “total suppression of charge
fluctuations” [103], as already encountered in the integer-N solution of section 3.2∫ fi+1(x)

fi(x)

dy ρ(y) = 1 (6.5)

so that there are values of x for which we have three electrons in the fragment, and
values of x for which we find only two particles (the third electron is in the other
fragment). In this way the co-motion functions incorporate the fractional electron
character on the fragment. See also figure 6.3 for further illustration.

A straightforward generalization of the co-motion functions to fractional electron
numbers can be attempted along the lines of section 3.2. We rewrite the condi-
tion (6.5) for the position fi(x) to be determined to the right of the reference electron∫ fi(x)

x

dy ρ(y) = i− 1 (6.6)

By the use of the cumulant

Ne(x) =

∫ x

0

dy ρ(y) (6.7)
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Figure 6.2: Simple example of the analysis used to deduce the SCE solution for
fractional electron numbers: we considered a density with M = 5 electrons, made
of two separated identical fragments (here given by two Gaussians), and we have
studied the exact SCE solution on each fragment. The graphic shows the positions
fi(x) of the other 4 electrons as a function of the position x of the first electron. The
two black circles represent the “local” SCE solution on each fragment.
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Figure 6.3: The SCE solution for a density integrating to Q = 2.5 electrons, taking
the condition into account that the density in between two adjacent electrons always
has to integrate to one. For some reference values of xr we find two other strictly
correlated positions and the density contains three electrons in total (upper panel).
For other reference values of x = xr, we can only find one other co-motion function
in the density and the third electron is pushed to infinity (lower panel).
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and its inverse N−1
e (x), this equation can be resolved for fi(x) to yield the co-motion

function in the first branch

fi(x) = N−1
e [Ne(x) + i− 1] for x < aN+η−(i−1) (6.8)

where the boundary value ak = N−1
e (k) takes into account that the position fi(x) is

to the right of the reference position x.
The second branch follows from considering fi(x) to the left of x∫ x

fi(x)

dy ρ(y) = N + 1− (i− 1) (6.9)

and we obtain

fi(x) = N−1
e [Ne(x)−N + i− 2] for x > aN+2−i (6.10)

For the third branch aN−i+2 < x < aN+η−i+1 we find from our analysis above, that
the respective electron is at infinity, and the co-motion functions for the entire domain
write

fi(x) =


N−1
e [Ne(x) + i− 1] for x < aN+η−i+1

N−1
e [Ne(x)−N + i− 2] for x > aN−i+2

∞ otherwise
(6.11)

with i = 2 . . . N + 1. To no surprise, the expressions from above coincide with the
ones for integer electron numbers (3.26) for η = 0 and η = 1.

V SCEee [ρ] can be evaluated as in the integer system (6.3), with the sum now
running up to N + 1. This is also true for the SCE potential, that is obtained in the
one-dimensional case by integrating

∇ṽSCE(r) =

N+1∑
i=2

w′[|x− fi(x)|] sgn[x− fi(r)] (6.12)

The constant C, up to which the SCE potential is defined, is always fixed by requiring
ṽSCE(|r| → ∞) + C = 0.

Three dimensions, spherically symmetric We have seen in section 3.2 that the
co-motion functions for the three-dimensional spherically symmetric case can be
deduced from the one-dimensional ones with a density symmetric w.r.t. the origin.
This yields along the lines of the preceding paragraph

fi(r) =


N−1
e [Ne(r) + 2i− 2] for r < ãN+η−2i+2

N−1
e [|Ne(r)− 2N + 2i− 4|] for r > ãN−η−2i+4

∞ otherwise
(6.13)

where the cumulant is adapted to the symmetry of the problem

Ne(r) =

∫ r

0

ds 4πs2ρ(s) (6.14)

Again, in the case of η = 0, 1 these co-motion functions agree with the ones of the
integer electron numbers (3.43).
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6.4 The derivative discontinuity in harmonic external
potentials

With the generalized co-motion functions to fractional electron numbers, we are able
to solve self-consistently KS-SCE equations for open systems. Fractional occupation
for the KS HOMO orbital is taken in the construction of the density from the orbitals
[252,253,255]. As usually, the spin-↑ and spin-↓ electrons exhibit the same potential,
and we remain in a spin-restricted framework.

We then consider Q electrons in an external harmonic confinement vext(r) =
1
2ω

2|r|2 in one and three dimensions. For the one-dimensional case, the same model
parameters as in section 5.3.2 are employed. As we seek for the strong-correlation
regime of this systems, where we expect our SCE functional to become the exact
one, the density has to be kept low through the system. This is achieved by shallow
confinements, i.e. setting the spring constant ω in the external harmonic potential
sufficiently small.

In figure 6.4 we show our self-consistent KS-SCE results for the HOMO eigenvalue
as a function of the particle number in the one-dimensional confinement. Comparison
is undertaken with the KS-LDA HOMO eigenvalue and the full-CI chemical potential
EN+1−EN . A moderately correlated case L = 1 is shown, and two strongly correlated
cases L = 70 and L = 150, where L is the effective confinement-length with ω = 4/L2.
For moderate correlation, L = 1, we see that KS-LDA, having ∆xc = 0, shows a
discontinuity in the HOMO value only when filling a new shell (even N ; second panel
of figure 6.1), while KS-SCE shows a small vertical change also when the N system
is open shell (at odd N). When correlation becomes stronger (L = 70, 150), the
KS-SCE self-consistent HOMO approaches more and more the exact step structure,
with very good quantitative agreement with the full-CI chemical potentials. For such
cases KS-LDA yields essentially a continuous curve, since the single particle energies
are all very close.

In figure 6.5 we show the results for a three-dimensional system (Hooke’s atom)
with small ω. We find again that the self-consistent KS-SCE HOMO eigenvalue
resembles the exact step structure1, similar to the one-dimensional results of figure 6.4.
This is remarkable in a spin-restricted formalism. KS-LDA results are not shown as the
self-consistent solution with LDA functional does not converge.

As promising feature of the SCE derivative discontinuity we note that the HOMO
eigenvalue shows non-analytic behavior at integer electron numbers in all correlation
regimes. The SCE kernel δ2Exc/δρ2 can then probably produce the quasi-singular
behavior as required [243], and the SCE functional is potentially suitable to model
long-range charge transfer and Coulomb blockade in time-dependent DFT calculations.
Investigations along this lines are currently undertaken [258,259].

1In appendix B we also show that the KS-SCE total energy becomes exact in the limit of small ω. For the
failure of standard functionals at this correlation regime see, e.g., ref. [256].
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Figure 6.4: Self-consistent results for the spin-restricted KS HOMO eigenvalue as a
function of the particle number Q for a quasi-one-dimensional quantum wire with
harmonic confinement in the direction of motion of the electrons, vext(x) = 1

2ω
2x2,

and ω = 4
L2 . The KS-SCE results are compared to the KS-LDA method and the exact

chemical potential EN+1 − EN from full-CI calculations [226].
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Figure 6.5: Self-consistent results for the spin-restricted KS HOMO eigenvalue as
a function of the particle number Q for a three-dimensional electronic system with
an external harmonic potential vext(r) = 1

2ω
2r2, in the strong-correlation regime

ω = 10−5. The KS-SCE results are compared with the exact chemical potential
EN+1 − EN [156,257].

6.5 Conclusions

The discontinuity in the HOMO eigenvalue for open shell systems from the self-con-
sistent KS-SCE is not just a unique result, but also an independent proof that the
exact spin-restricted KS formalism should have this feature. In fact, we have only
used the exact V SCEee [ρQ] in the KS self-consistent procedure, without imposing any
other condition on our functional. Until now this feature has only been captured in
the context of lattice hamiltonians [260], or by imposing it in a spin-unrestricted
framework2 as, e.g., in refs. [247,248,250].

From a practical point of view our results could already be used to model trans-
port through a correlated quantum wire or quantum dot, going beyond the lattice
calculations of refs. [208,246,258]. Our findings also provide novel insight for the
construction of approximate exchange-correlation functionals. The challenge is to
transfer this exact behavior into approximations for less extreme correlation regimes,
relevant for solid-state physics and chemistry. First attempts are presented in the next
chapter of this thesis with an LDA correction to the SCE functional.

2An exception to the spin-unrestricted construction is ref. [214], which attempts at constructing, in a
spin-restricted framework, a functional showing the linear behavior of (6.1).
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He Isoelectronic Series”
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7.1 An overview

Both, low-density nanostructures and stretched bonds involve charge localization
due to strong spatial correlations. This is by definition the case in which SCE tends
asymptotically to the exact exchange-correlation functional. To gain insight into the
performance of the SCE functional for a wider class of chemical systems, we consider
here a conceptually different problem in which electronic correlation still plays a
crucial, but less pronounced, role. This is the anions of the He isoelectronic series,
described by the Hamiltonian

Ĥ = −1

2
∇2

1 −
1

2
∇2

2 −
Z

r1
− Z

r2
+

1

r12
(7.1)

with Z < 2. Despite its simplicity, the problem nonetheless is very challenging for DFAs,
because a balanced description of kinetic and electronic-interaction contributions
is needed. Accurate wavefunction calculations [261] have shown that, when the

81
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nuclear charge Z is lowered and crosses a critical value Zcrit ≈ 0.91103, a quantum
phase transition occurs from a bound to an unbound two-electron system. Thus, with
this simple Hamiltonian we can explore a whole class of very loosely bound anions,
including the quantum phase transition at Zcrit.

As is well known, anions are problematic for state-of-the-art KS-DFT. Standard
approximations often yield a positive eigenvalue for the HOMO, corresponding to
a quasi-bound state (or resonance) instead of a properly bound state. Estimates of
electron affinities are then obtained by the energy difference EN=2 − EN=1 [262],
ignoring the inconsistency with the HOMO eigenvalue. In the complete basis set
limit, here by inclusion of plane waves, a positive orbital eigenvalue would lead to
an unbound electron extending over the entire space. Consequently within the finite
basis set, orbitals with positive orbital energies should not be occupied. In practice,
however, convergence of these calculations can only be achieved if the orbital with
positive eigenvalue is occupied, corresponding to an electron artificially bound by the
finite basis, and this procedure has been criticized [263].

The failure of standard DFAs in binding anions is often attributed to the self-inter-
action error. However, despite being self-interaction free the Hartree-Fock method fails
for H−, yielding a negative binding energy for the second electron in contradiction
to experiment [264]. It shows that, a proper accounting of correlation is required to
stabilize the system, and the SIE is not the only problem.

For the SCE functional we know that it overestimates electronic correlation, leading
to a severe underestimation of the total energy in the intermediate-correlation regime.
An accurate treatment requires corrections to the SCE energy, and in this chapter
we explore a correction based on the local density approximation (LDA) to improve
on the SCE energy densities for exchange and correlation. The major physics in
these corrected functionals, however, is still captured by the SCE functional. Due to
the formal simplicity of the corrections self-consistent solutions with the corrected
functionals are feasible. We focus on the anions close to the quantum phase transition,
and results (including energies, densities and KS potentials) are compared to a very
accurate wavefunction treatment and to standard approximate exchange-correlation
functionals. To allow for a better comparison of DFT and wavefunction methods, we
also perform an extended analysis of some exact properties of the density and of the
KS potential at Zcrit.

7.2 The SCE functional for two electrons

In section 3.2 the co-motion functions for the case of spherically symmetric densities
were derived that give the radial distances from the nucleus of N − 1 electrons
w.r.t. an electron at some reference position. For the evaluation of the SCE energy
and potential (3.12)-(3.15) additionally the minimizing angles for the angular part
of electrostatic energy (3.42) are required. In a N = 2 system the two electrons in
the SCE solution will be always opposite to each other around the origin at a relative
angle π (maximum angular correlation), and the angular minimization can be omitted.
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Therefore the SCE functional (3.15) writes

V SCEee [ρ] =
1

2

∫
dr 4πr2ρ(r)

1

r + f(r)
(7.2)

with the single co-motion function for the N = 2 case

f(r) = N−1
e [2−Ne(r)] (7.3)

The SCE potential ṽSCE(r) is then simply obtained by integrating the spherically
symmetric equivalent of (3.12) taking the orientation of the electrons into account

ṽ′SCE(r) =
1

[r + f(r)]2
(7.4)

with boundary condition ṽSCE(r → ∞) = 0. As can be seen from this equation,
the correct asymptotic behavior of the Hartree plus exchange-correlation potential is
obtained ṽSCE(r →∞) ∼ 1/r, since f(r →∞)→ 0. This is also true for the general
N -electron case, since the correct (N − 1)/r asymptotic leading term can be similarly
derived from (3.12) [117].

7.3 Quantitative corrections to the SCE functional

In general, given an approximate exchange-correlation functional Eapproxxc [ρ], it is
possible to extract from it an approximation to Tc[ρ] and V dee[ρ] (5.11) in KS-SCE by
using the scaling properties [177,265] of DFT. Considering in D dimensions the with
γ > 0 scaled density ργ(r) ≡ γDρ(γ r), we have [265]

Tc[ρ] + V dee[ρ] ≈ Eapproxxc [ρ]− lim
γ→0

1

γ
Eapproxxc [ργ ] (7.5)

that efficiently replaces the SCE exchange-correlation energy estimate by the one from
the DFA (first term), as SCE estimate can be written as the low-density limit of the
approximate functional (second term). This as long as the DFA by construction also
yields the exact low-density limit.

A simple, yet accurate, way to construct the correction term Tc[ρ] + V dee[ρ] is to
progress in an LDA spirit

TLDAc [ρ] + V d,LDAee [ρ] =

∫
dr ρ(r)

{
(tc(ρ(r)) + vdee(ρ(r))

}
(7.6)

where tc(ρ) and vdee(ρ) are the kinetic correlation energy per particle and the electron-
electron decorrelation energy per particle of the homogeneous electron gas (HEG) of
density ρ. They can be easily obtained from (7.5)

tc(ρ(r)) + vdee(ρ(r)) = εxc(ρ(r))− εSCE(ρ(r)) (7.7)

where εxc(ρ) and εSCE(ρ) are, respectively, the exchange-correlation energy per
particle and the indirect part of the SCE interaction energy per particle for the HEG.
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The latter can be obtained by considering that in the external potential due to an
infinite uniform background with positive charge density ρ+ = ( 4

3πr
3
s)
−1 the minimum

possible electron-electron repulsion is attained with the electrons localized at the sites
of the bcc crystal with lattice parameter a = 2(π/3)1/3rs. A uniform electronic density
ρ = ρ+ is constructed by taking a linear superposition of all the possible origins and
orientations of the crystal. In other words, in the simple uniform-density case the
co-motion functions are just the lattice vectors of the bcc crystal with origin in the
reference electron, whose position is distributed uniformly. This means that for all
values of the density parameter rs the SCE energy of the uniform electron gas is equal
to the low-density leading term of the HEG energy

εSCE(ρ) = − d0

rs(ρ)
(7.8)

Here we have set d0 ≈ 0.891687, which is the value from the Perdew-Wang-92 LDA
parametrization [50]. We denote this method KS-SCE+LDA.

It is also possible to consider the local correction only for the electron-electron
repulsion part, assuming that the error made by the KS kinetic energy is, for these
systems, less serious than the one made by the SCE functional, so that the correction
needs to rebalance the two terms. This corresponds to taking as correction only

V d,LDAee [ρ] =

∫
dr ρ(r)vdee(ρ(r)) (7.9)

where vdee(rs) is obtained by subtracting from (7.7) the kinetic correlation contribution
tc = − d

drs
(rsεxc). We call this approximation KS-SCE+LVee,d.

Because of the linear ansatz for the corrections (7.5) size consistency is pre-
served in the SCE+LDA functionals. As undesired feature we note an occurring
self-interaction error, as the integral (7.6) does not vanish for one-electron densi-
ties. However, the self-interaction error present in the KS-SCE+LDA approach is
substantially different from the self-interaction error in standard KS-LDA or KS-GGA.
In KS-LDA and GGA the self-interaction error manifests in the wrong asymptotic decay
of the KS potential (−Z−Nr instead of −Z−N+1

r ). KS-SCE has the correct −Z−N+1
r

decay and this is not altered by the exponentially vanishing LDA contribution upon
going from KS-SCE to the local corrections.

In the realm of the adiabatic connection, cf. section 2.2.3, the correction corre-
sponds to approximating the global integrand Wλ by its LDA value, that itself stems
from the physical HEG reference. By this a quantitatively meaningful total energy is
expected. The corresponding potential, however, still carries over the SCE contribu-
tions when the derivative of the functional is taken, which evaluate in a non-local
fashion from the actual, usually non-uniform, density, and the resulting self-consistent
solution will differ substantially from the self-consistent LDA solution.
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Z k c

0.9110289 0.60672 0.448

0.92 0.67 0.41

0.93 0.68 0.40

0.94 0.69 0.39

0.95 0.70 0.38

Table 7.1: Approximately optimal values of k and c used for several values of Z in
the accurate wavefunctions. The first row is from ref. [261].

7.4 Accurate results for the anions of the He isoelec-
tronic series

For a transparent analysis of the KS-SCE results at the quantum phase transition
we extend the work of Umrigar and Gonze [266] by studying the accurate densities
and KS potentials for Z < 1. We use Hylleraas-type wavefunctions, where very
accurate results for the He isoelectronic series with nuclear charge Z between one
and ten [158], and for weakly bound anions close to and at the quantum phase
transition [261], are obtained by using basis functions that depend explicitly on the
interelectronic coordinates. For the latter the wavefunction is a linear combination of
476 basis functions consisting of 244 modified [158] Frankowski-Pekeris [267] basis
functions φFPn,l,m,j(2Zks, 2Zkt, 2Zku), where

φFPn,l,m,j(s, t, u) = sntlum(ln s)je−s/2 (7.10)

and 232 Frankowski [268] basis functions φFn,l,m,j(2Zks, 2Zkt, 2Zku), where

φFn,l,m,j(s, t, u) = sntlum(ln s)j
(
ect ± e−ct

)
e−s/2 (7.11)

Here k and c are flexible scaling parameters and s, t, and u are the Hylleraas coordi-
nates

s = r1 + r2, t = r2 − r1, u = r12 (7.12)

The ± sign depends on whether l is even or odd, to assure the proper symmetry
of the basis functions under exchange of two electrons (t → −t). The powers n,
l, m, and j are chosen to duplicate the first several leading terms in the behavior
of the exact wavefunction of a Helium-like ion near the three-particle coalescence,
which is given by the Fock expansion [269–271]. This composite basis was used in
ref. [261] to obtain compact and highly accurate representations of the wavefunction
of the sole bound state of the Helium isoelectronic sequence for values of Z between
Zcrit ' 0.9110289 and 1. Table 7.1 shows the approximately optimal values of k and
c used for several values of Z in the present work.
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Figure 7.1: Accurate density r2ρ(r) for various anions with nuclear charge Z of the
He isoelectronic series.

The exact density of an atomic or molecular system is commonly known to decay
(with exceptions when the ground-state of the ion is not asymptotically accessible by
symmetry) as [175,176,272]

ρ(r →∞) ∼ exp(−2
√

2 Ip r) (7.13)

This would suggest an increasingly spread out density when the critical value Zcrit
with the ionization potential Ip → 0 is approached (Ip = EN−1−EN ). The expansion,
however, is valid only for 1/r � Ip, and from rigorous analysis [273] it can be proven
that the density remains compact and satisfies the boundary conditions

C−(δ)r−3/2−δe−2[8(1−Zcrit)r]1/2 ≤ ρ(r) ≤ C+(δ)r−3/2+δe−2[8(1−Zcrit)r]1/2 (7.14)

where δ is an arbitrary small positive number and C±(δ) is a constant depending on δ.
Accurate densities for selected values of Z ≤ 1 are shown in figure 7.1 and confirm
the argument.

Further refinement of the asymptotic decay of the density at Zcrit can be achieved
by studying the corresponding differential equation for

√
ρ [176] (which for a N = 2

singlet coincides with the KS equation). At the quantum phase transition, with the
asymptotic potential to fourth order [175,266], this equation is[

−1

2
∇2
r −

Z −N + 1

r
+O

(
1

r4

)]√
ρ(r) = 0 (7.15)

By solving this equation asymptotically (r →∞), we obtain, order by order, a solution
for the leading terms of the asymptotic density to order O(r−4)

ρ(r →∞) ∼ e−4a
√
r

r3/2

(
1 +

3

8a r1/2
− 3

128a2 r
+

15

1024a3 r3/2
− 405

32768a4 r2

)
(7.16)
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Figure 7.2: Comparison of the long-range behaviour of r2ρ(r) at Zcrit obtained from
the asymptotic decay in expressions (7.14) and (7.16) with the very accurate result
from the Hylleras-type wavefunction of this section.

with a =
√

2(−Z +N − 1). This decay agrees to leading order with the independent
result of (7.14). The accurate density at the quantum phase transition together with
the decays from (7.14) and (7.16) are displayed in figure 7.2, where in both cases the
proportionality constant has been adjusted to match the accurate density at the end
of the radial grid (r ≈ 100). Notice that (7.15) implies that for the exact KS system
(which yields the exact ground-state density) the equality εHOMO = −Ip also holds at
Z = Zcrit when Ip = 0.

KS potentials, accessible by the inversion of the KS equations [266], for selected
values of Z ≤ 1 are shown in figure 7.3. We see that the KS potentials have a bump at
intermediate length scale. This bump increases for smaller Z, as can be expected from
the asymptotic first order contribution at large r, vKS(r → ∞) = (1 − Z)/r, which
will be positive for Z < 1. The bump is present also for the Hydrogen anion, where
this first order contribution vanishes.

In figure 7.4 we show the correlation potentials for selected values of Z. As was
found in ref. [266], the accurate correlation potential close to the nucleus has a nearly
quadratic behavior. In refs. [274,275] it has been shown that the linear term in the
correlation potential is due to the kinetic contribution, which, thus, turns out to be
very small.
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Figure 7.3: Accurate KS potential vKS(r) for the same anions as in figure 7.1.
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Figure 7.4: Accurate correlation potential vc(r) for the same anions as in figure 7.1.
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7.5 SCE functionals for the anions of the He isoelec-
tronic series

For the He isoelectronic series with Z ≤ 2 we have solved self-consistently the
restricted KS equations with various approximate functionals. Calculations for the HF
method1, KS-LDA, KS-SCE and KS-SCE with the two local corrections of section 7.3
were performed with a numerical code developed in our group. We chose the Perdew-
Wang-92 (PW92) LDA parametrization [50]. For comparison of our calculations with
the available standard approximations we have further performed restricted KS-DFT
calculations with the Amsterdam Density Functional package (ADF) [276–278] for
an extended range of functionals. From the GGA class of functionals we chose the
PBE functional [63], from the metaGGA class the revTPSS functional [279], and from
the hybrid functionals B3LYP [49, 61, 82, 95]. If not mentioned otherwise, all ADF
calculations were carried out in the even-tempered(ET)-QZ3P basis supported by 3
diffuse s-functions with the parametrization of Hydrogen [280]. To assess the quality
of the basis set we have also performed KS-LDA (PW92 functional) calculations with
the ADF package, and compare them to our numerical grid implementation.

As definition of the critical nuclear charge Zcrit for the various DFT approximations
we consider the value of Z at which either the ionization energy Ip = EN=1 − EN=2

becomes smaller than 0, or the HOMO eigenvalue εHOMO becomes positive. Although
the equality εHOMO = −Ip is not strict for approximate functionals, we invoke the
HOMO eigenvalue criterion to avoid the already mentioned conceptual and numerical
issue of occupying orbitals with a positive eigenvalue.

Table 7.2 shows the predicted Zcrit for the quantum phase transition together
with the corresponding ionization energy Ip and the HOMO energies for the various
approximations. Of the DFT approximations considered, only the SCE functionals
(SCE and SCE with local corrections) and the hybrid functional are able to bind the
Hydrogen anion. The hybrid functional, however, yields an unphysical description
of the bound anion, as will be further outlined below. Remarkably, all the standard
functionals at different levels of approximation yield a similar value of Zcrit ≈ 1.2.
This shows that the nonlocality encoded in the SCE functional is able to capture
different many-body effects than the standard approximations.

As already discussed in chapter 5, KS-SCE yields a lower bound to the total
energy. From the underestimation of Zcrit ≈ 0.7307 versus the actual value Zcrit ≈
0.9110289 we see again that, in the present intermediate-correlated regime, this
bound is not very tight. The inherent strong-correlation nature of the electrons in the
SCE formulation underestimates the realistic electronic repulsion energy drastically,
because it minimizes the repulsion energy of point-charges. Another consequence
of the underestimated repulsion energy is that the electron density can be more
contracted closer in a self-consistent KS-SCE procedure to lower the attraction energy

1For N = 2 the HF method becomes equivalent to the exact-exchange optimized effective potential
method, as the HF exchange potential in this case is a local potential

vx(r) = −
1

2

∫
dr′

ρ(r′)

|r− r′|
(7.17)
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Zcrit εHOMO −Ip
Accurate 0.9110289 0.0 0.0

numerical

HF 1.0312 −0.05809 0.0

KS-LDA, PW92 1.2244 0.0 −0.18509

KS-SCE 0.7307 0.0 −0.05639

KS-SCE+LDA, PW92 0.9474 0.0 −0.05253

KS-SCE+LVee,d, PW92 0.9012 0.0 −0.04964

ET-QZ3P+3diffuse

KS-LDA, PW92 1.2240 0.0 −0.18477

KS-GGA, PBE 1.2303 0.0 −0.19179

KS-metaGGA, revTPSS 1.2120 0.0 -a

KS-Hybrid, B3LYP 0.6932 −0.0041 0.0

(KS-Hybrid, B3LYP)b 1.1403 0.0 −0.15909

aNot supported by ADF [276–278]
bET-QZ3P basis

Table 7.2: Zcrit estimate with corresponding negative ionization energy −Ip =
EN=2 − EN=1 and HOMO energies εHOMO for various approaches.
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Figure 7.5: r2ρ(r) for H− and various approaches.

KS-SCE KS-SCE+LDA KS-SCE+LVee,d accurate HF

EH −0.5 −0.3562 −0.3755 −0.5 −0.5

EH− −0.6972 −0.4275 −0.4614 −0.5278 −0.4879

AH −0.1972 −0.0713 −0.0859 −0.0278

Table 7.3: Self-consistent ground state energies for H and H− and electron affinities
AH = EH− − EH . Only the methods are considered that yield a negative HOMO
eigenvalue.

with the nucleus up to the point where the kinetic energy starts to dominate. This
is shown in figure 7.5, where a more compact KS-SCE density is observed when
compared to the accurate solution.

The local corrections to the SCE functional improve considerably the predicted
Zcrit, see table 7.2, mainly due to the preserved correct long-range behavior of the
locally corrected SCE potentials, which yield accurate HOMO eigenvalues. Ground-
state energies, reported in table 7.3, are improved in the case of H−, which corrects the
electron affinities. On the downside, the self-interaction error of the LDA corrections
significantly worsens the result for the one-electron atom. The same self repulsion
will in general lead to a too spread out density, as also observed in figure 7.5, where
the KS-SCE+LDA densities are too spread out compared to the other approaches.

In figure 7.5 and table 7.3 we report also the Hartree-Fock results. This is possible
because of the negative HOMO eigenvalue even though EN=1 < EN=2 (If the electron
number were treated as variational parameter the minimum energy would be attained
for N < 2.) We see from figure 7.5 that the accurate density is resembled more closely
by the HF density than by the densities of the other approaches. This supports the
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Figure 7.6: r2ρ(r) and vKS(r) for various Z ≤ 1 for the KS-SCE (above) and KS-
SCE+LDA (below) method.
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Figure 7.7: r2ρ(r) for H− with the B3LYP functional and a ET-QZ3P plus 3 diffuse
function basis. It displays a second unphysical maximum in the density.

point of view of ref. [281] and the general idea of using HF densities as input for DFA
energies in the case of negative ions [282,283], even when HF energetically does not
bind the last electron. A properly self-interaction free functional, however, is required
for accurate total energies.

For the hybrid functional in the ET-QZ3P+3diffuse basis we obtain a negative
εHOMO and EN=1 > EN=2 for H−. Formally the hybrid thus binds the additional
electron. When inspecting the density, however, one observes that the electron
partially escapes from the nucleus, as shown in figure 7.7. By removing the 3 diffuse
basis functions from the basis set to prevent the density accumulation in the outside
region, we obtain a value of Zcrit in between that from HF and conventional DFT, as
one would expect.

We turn to the discussion of the Kohn-Sham and exchange-correlation potentials
for the self-consistent densities, displayed in figure 7.6 and 7.8. We see that the SCE
total Kohn-Sham potential does not develop the bump for Z = 1, but only for smaller
nuclear charges when the interelectronic repulsion dominates over the weaker nuclear
attraction, see figure 7.6. As already observed in figure 7.5 this corresponds to a very
compact density. For larger distances, the SCE potential is in good agreement with
the accurate one. This also manifests the absence of the self-interaction error in the
SCE potential. From figure 7.8 we also see that the SCE potential is quadratic close
to the nucleus, as can be easily proven analytically from (7.4), since when r → 0 we
have f(r → 0)→∞, so that ṽ′SCE(r → 0) = 0. This is in agreement with the findings
of refs. [274,275], as there is no kinetic contribution in the SCE potential.

Although the SCE functional approximates exchange and correlation together, in
figure 7.9 we show the SCE correlation potential alone, obtained by subtracting from
the SCE exchange-correlation potential the exchange potential (7.17) computed from
the self-consistent KS-SCE densities. We see that the SCE correlation potential is
always negative, in contrast to the exact one in figure 7.4. The positive part of the



94 KS-SCE for the anions of the He isoelectronic series

2 4 6 8 10 12

r

-0.03

-0.02

-0.01

0.01

0.02

0.03

vKSHrL

accurate

KS-SCE

KS-SCE+LDA

KS-SCE+LVee,d

HF

2 4 6 8 10 12

r

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

vxcHrL

accurate

KS-SCE

KS-SCE+LDA

KS-SCE+LVee,d

HF

Figure 7.8: vKS(r) and vxc(r) for H− and various approaches.
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Figure 7.9: The self-consistent correlation potentials vc(r) from the bare KS-SCE
method.

exact correlation potential is mainly due to kinetic correlation effects [144,284] that
are, as said, missed in the bare SCE.

A bump for H− in the total KS potential is introduced by the locally corrected SCE
functionals, though the bump is too pronounced, particularly in KS-SCE+LDA. This is
also responsible for the overestimation of Zcrit, and can to some extend be attributed
to the self-interaction error present in this functionals. The KS-SCE+LVee,d is more
attractive at short distance than the exact KS potential, achieving error compensation
with the overestimation of the bump (less severe than in the KS-SCE+LDA method),
which results in a good estimate for Zcrit ≈ 0.9012. Of the methods studied the
KS-SCE approaches with the local corrections are the ones in which the HOMO energy
deviates the least from the corresponding EN − EN−1, see table 7.2.

The HF (or exact exchange) potential is also shown in figure 7.8, although, once
more, we have to keep in mind that in this case EN=2 > EN=1.

7.6 The derivative discontinuity in the Hydrogen nu-
clear field

We complete our analysis by also allowing for fractional electron numbers Q, with 0 ≤
Q ≤ 2, in the Hydrogen nuclear potential, which is often considered a paradigmatic
model for a Mott insulator [214]. As already discussed in chapter 6, in exact KS-DFT
the HOMO eigenvalue should be constant between any two adjacent integer electron
numbers (say, N and N + 1), equal to the negative of the exact, interacting, ionization
energy −Ip = EN+1 − EN , and should jump whenever an integer electron number is
crossed [228,236].

In KS-DFT with the standard functionals, an extension to fractional electron
numbers is easily achieved by giving fractional occupation to the HOMO [253,255].
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Figure 7.10: HOMO eigenvalue εHOMO versus particle number N in the Hydrogen
nuclear potential for various approaches.

For the KS-SCE method we additionally need to consider co-motion functions for
fractional electron numbers, see ref. [285] and chapter chapter 6 of this thesis. In the
case of 1 < Q ≤ 2 the radial co-motion function f(r) of section 6.2 write

f(r) =

{
N−1
e [2−Ne(r)] for r > N−1

e [2−Q]

∞ otherwise
(7.18)

The illustration of (7.18) is very simple: if the two electronic positions are always
separated by a radial distance such that the density integrates to 1 (“total suppression
of charge fluctuations”) ∫ f(r)

r

ds 4πs2ρ(s) = 1 (7.19)

for densities integrating to less than 2, there are values of r for which the second
electron “cannot enter” in the density.

We mention again that here we consider the challenging case of the restricted
KS method. Also in this framework for singlet N = 2 systems, as we increase the
occupancy Q of the HOMO orbital, we should observe a jump in its energy at Q = 1.
Notice that in the restricted KS method the conditions of ref. [214] regarding the spin
degree of freedom are automatically fulfilled, so that the gap at Q = 1 is the same as
the “Mott gap” for 1/2 spin-up and 1/2 spin-down electrons.

Figure 7.10 displays the HOMO eigenvalues for 0 < Q ≤ 2 for various approaches
in the restricted KS scheme. The SCE functional shows a vertical change at Q = 1
in the HOMO energy even in the restricted approach. As seen in chapter 6, a sharp
KS-SCE step is only obtained in the extremely strong-correlation (or low-density)
limit [285], from which H− is still far. The two SCE functionals with the local
corrections exhibit the same smoothed step, but the self-interaction error leads to a
non-constant HOMO energy between 0 < Q < 1. The HF curve we report here has
been obtained by keeping the occupancies of the two lowest spin orbitals equal at all
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numerical ET-QZ3P+3diffuse

KS-LDA KS-LDA KS-GGA KS-metaGGA KS-Hybrid

(PW92) (PW92) (PBE) (revTPSS) (B3LYP)

Qmax 1.71 1.71 1.70 1.73 1.75a

aBy integrating over the inside region (0 < r < 13) in figure 7.7.

Table 7.4: Maximum number of electrons Qmax bound in the Hydrogen nuclear
potential for methods unable to bind H−.

Q, thus restricted HF. This is the situation encountered in HF on an isolated fragment
when stretching a bond or expanding a lattice [214].

Finally, figure 7.10 allows for a determination of the maximum number of electrons
Qmax bound by the conventional DFT approaches. The results are compiled in
table 7.4. We observe, similarly to Zcrit, that the predicted value of Qmax is insensitive
to the level of approximation of the standard functionals, further supporting the idea
behind the model potential of ref. [255].

7.7 Conclusions

We have applied functionals based on the exact strong-coupling limit of DFT to the
loosely bound negative ions of the He isoelectronic series, which are a prototypical
case for the delicate physics of anions and radicals. Whereas standard DFT functionals
either do not bind anions, or bind them with unphysical long-range features in the
charge density, the functionals based on SCE have a rigorous tendency to overbind
that can be mitigated by local corrections. This shows that the SCE functional and its
corrections are able to capture many-body effects radically different from the ones
described by the standard functionals, although improvements are still needed. In
particular one should aim at corrections based on correlation kinetic energy effects
and/or on self-interaction free approaches like exact exchange [286].

Besides improving the accuracy of the functionals based on SCE, the challenge for
the future is also to implement SCE physics into routinely applicable approximations.
This can be done by either developing algorithms that evaluate the exact SCE func-
tional exploiting its formal similarity to an optimal transport problem [120,121], as in
the pilot implementation of ref. [123], or by constructing new approximations based
on the idea of co-motion functions, i.e. by trying to build approximate and simplified
co-motion functions. These, in turn, could be used in local interpolations along the
adiabatic connection that preserve size consistency [287].

Finally, our study also provides reference data for the anions of the He isoelectronic
series close to and at the quantum phase transition, which can be valuable to test the
accuracy of new DFT approximations (see, e.g., ref. [288] that presents correlation
potentials from RPA approaches, and are good approximations to the true correlation
potential).





Chapter 8

Summary and Outlook

The significance of the strong-interaction limit of DFT for the development of approxi-
mate density functional was demonstrated, and approximate density functionals were
designed by the inclusion of this limit in their formulation. Applications of the KS-SCE
method to model quantum wires, models for chemistry, Hooke’s atom and the negative
ions of the Helium isoelectronic series show that good quantitative accuracy can be
already obtained for systems with weak or strong electronic correlations. Additionally,
strong-correlation phenomena are correctly captured in all correlation regimes within
a restricted KS-DFT scheme. Improvements in accuracy in the intermediate-correlated
regime can be achieved by corrections to the SCE functional, either by taking into
account higher order terms in the expansion of the interelectronic energy in the
strong-interaction limit (KS-ZPE-SCE methods), or by resorting to the homogeneous
electron gas for quantitative reference (KS-SCE-LDA methods).

For the KS-ZPE-SCE methods a self-consistent implementation was not achieved
due to the formal difficulties in the functional derivative of these energy functionals.
The KS-SCE-LDA methods show improvements in some respects, but are yet not overall
satisfactory. This can be attributed to the self-interaction error that is introduced by
the LDA correction, and future developments should focus on self-interaction free
variants. Such a method is given, e.g., by modifying the definition of the Wigner-Seitz
radius rs, which serves as input variable for the LDA. Instead of estimating it from the
homogeneous electron gas by

rHEGs =

(
3

4πρ0

)1/3 ∣∣∣
ρ0=ρ(r)

(8.1)

rs can be evaluated from the actual density by requiring that the sphere Ω of radius
rs around the reference position r exactly integrates to one

1 =

∫
Ωrs (r)

ds ρ(s) (8.2)

This complicates the functional derivative, but a self-consistent implementation is still
feasible as demonstrated in ref. [129].
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Attempts towards a generalization of the SCE formalism towards arbitrary three-di-
mensional densities are also pursued. An approximate computation of the co-motion
functions could be achieved by geometrical arguments. This possibility is currently
investigated for the H2 molecule [125].

An interesting area of application for the SCE functional is the modeling of charge
transport in nanodevices. Due to the presence of the derivative discontinuity in the
SCE functional, the possibility of describing the Coulomb blockade or the Kondo effect
can be explored [258]. Other improvements can be expected in the simulation of
long-range charge transfer (CT) processes. Pilot applications of the SCE functional
to a one-dimensional model for a stretched H2 molecule show that the electron
hopping excitation HH→ H+H− is correctly captured in the absorption spectra, which
can be computed from the real-time propagation of the time-dependent Kohn-Sham
equations within an adiabatic TDDFT framework [259]. Absorption spectra of the
H atom and stretched H2 molecule, obtained with the SCE functional, are shown in
figure 8.1, where the CT peak can be identified in the H2 molecule at ω ≈ 0.516Ha,
which agrees well with the estimate from the orbital eigenvalues

ωSCECT ≈ −εHHOMO + εH
−,SCE

HOMO − 1/R

= 0.541Ha
(8.3)

whereby the exact CT peak is estimated at

ωCT ≈ IH −AH − 1/R

= 0.569Ha
(8.4)
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Figure 8.1: Linear-response photo-absorption spectra for the one-dimensional model
of the H atom and the stretched H2 molecule of chapter 5. The spectra were obtained
within an adiabatic TDDFT framework by the real-time propagation of the TDKS
equations with the SCE potential. As the SCE functional is self-interaction free, the H
spectrum shown is equal to the one from the time-propagation of the time-dependent
Schrödinger equation. The CT peak for the electron hopping HH→ H+H− in the H2

spectra is at ω ≈ 0.516Ha.





Appendix A

PC Cell and
Exchange-Correlation Hole for
the Homogeneous Electron Gas

In this appendix we clarify the difference between the exchange-correlation hole
and the point-charge plus continuum (PC) cell of chapter 3, by considering the
homogeneous electron gas in the extreme low-density limit. Thus further extending
the argument already given in the appendix of ref. [105].

More than seventy years ago Wigner [180,289] pointed out that electrons embed-
ded in a compensating uniformly charged background would crystallize at sufficiently
low values of the density ρ. The SCE construction can be seen as nothing else than
the Wigner idea generalized to a nonuniform density ρ(r). Indeed, in ref. [102] the
SCE formalism is presented as a “floating” Wigner crystal in a non-euclidean space,
with the metric determined by the density ρ(r).

In the case of the uniform electron gas the SCE co-motion functions are simply the
positions of the bcc lattice points with origin fixed at the reference electron. Notice
that the constraint of continuous density forces us to consider a “floating” Wigner
crystal, which corresponds to the linear superposition of all the possible origins and
orientations of the crystal, thus restoring the translational symmetry. The exchange-
correlation hole ρ(g(r) − 1), with g(r) the pair-distribution function, can then be
simply constructed by considering that the expected number of electrons in a spherical
shell of radius r and thickness dr around the reference electron at the origin is given
by

dN(r|0) = ρ g(r) 4πr2dr (A.1)

We can then place very narrow normalized gaussians (almost delta functions) at the
bcc sites around the reference electron and take the spherical average. This way, we
obtain the extreme low-density limit of g(r). In figure A.1 we compare this low-density
(or SCE) g(r) − 1 with the PC cell c(r) in the same units, c(r) = −θ(rs − r), with
θ(x) the Heaviside step function. We see that the two are very different, except for
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Figure A.1: PC cell divided by the density ρ (i.e. c(r) = −θ(rs − r)), and the pair-
correlation function g(r)− 1, corresponding to the exchange-correlation hole divided
by the density ρ, for the extreme low-density uniform electron gas.

r/rs ≤ 1. The exchange-correlation hole has positive peaks (indicating the positions
of the other electrons) that extend to r →∞ (perfect long-range order). Notice that
the exchange-correlation hole for the broken symmetry solution (without translational
invariance) would be, instead, much less structured, but here we are interested in
the solution constrained to the uniform density. The way the electrostatic energy is
calculated from the PC cell and the exchange-correlation hole is also different [105]

w = ρ

∫
dr
g(r)− 1

r
(A.2)

w = −ρ
∫

dr
c(r)

r
+
ρ2

2

∫∫
drdr′

c(r)c(r′)

|r− r′| (A.3)

When we use the exchange-correlation hole (A.2) to evaluate the energy, we need
to evaluate an infinite sum (all the peaks in figure A.1), which converges very badly
(the Madelung sum), and that can be dealt with, e.g., the Ewald method. For the PC
cell (A.3) we face two very simple, short-ranged, integrals [290]. The results from
the two expressions differ only by 0.45%, as was already noted in ref. [291], where
it was also proven that the PC value is a rigorous lower bound for the energy of the
uniform electron gas.

Notice that if, instead, we consider the PC cell as a model for the exchange-
correlation hole and we use c(r) in (A.2) in place of g(r) − 1, we get a very poor
result [105] with an error of ∼ 17%. The PC model does approximate the electrostatic
potential of the exchange-correlation hole by constructing it in a different way.



Appendix B

KS-SCE Total Energies for
Hooke’s Atom

In table B.1 and figure B.1 we report ground state energies for the Hooke’s atom,
i.e. two electrons in the external harmonic potential

vext(r) =
1

2
ω2r2 (B.1)

Self-consistent solutions with the KS-SCE method of chapter 5 are compared to the
accurate solutions of ref. [257]. In the low-density limit ω → 0 we see that KS-SCE
approaches asymptotically the accurate solution.
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ω KS-SCE accurate error

0.00001 0.0005626 0.0005763 2.4%

0.0001 0.002665 0.002802 4.9%

0.0014 0.01647 0.01832 10.1%

0.01 0.06814 0.07921 14.0%

0.06 0.2813 0.3278 14.2%

0.1 0.4328 0.5 14.4%

0.3 1.135 1.276 11.1%

0.5 1.805 2.0 9.7%

Table B.1: Ground state energies for Hooke’s atom at several spring constants ω of
the self-consistent KS-SCE method compared with the accurate solution [257].

Figure B.1: Same as table B.1 graphically.



Samenvatting

In dit proefschrift worden nieuwe benaderingen voor dichtheidsfunktionalen afgeleid
voor gebruik in dichtheidsfunktionaaltheorie (DFT). Focus is hierbij op de beschrijving
van sterke correlatie effecten zoals te zien bij micro-elektronica op de nano-meter
schaal of chemisch reacties en die alleen maar moeilijk met traditionele dichtheids-
funktionalen te simuleren zijn.

Als uitgangspunt wordt het “strictly correlated electrons” (SCE) concept gebruikt.
Door middel van een combinatie van het SCE referentiesysteem met het gebruikelijke
Kohn-Sham (KS) referentiesysteem kunnen benaderingen opgesteld worden welke
zowel het kwantummechanische karakter van het elektron als de klassieke Coulomb
repulsie tussen meerdere elektronen weergeven maar nog altijd makkelijk op te
lossen zijn. Hierbij worden empirische parameter in de afleiding voorkomen en de
benaderingen worden puur formeel gemotiveerd in het kader van de adiabatische
connectie van DFT.

Nadat in de eerste drie hoofdstukken een introductie en overzicht over de formele
grondslagen gegeven wordt, stellen wij in hoofdstuk 4 als mogelijk funktionaal-
benadering een interpolatie voor tussen de KS en SCE referentiesystemen. Deze
aanpak gaat uit van lokale energiedichtheden en kan deze door onthouden van
het SCE referentiesysteem nauwkeurig modelleren voor systemen met sterke corre-
latie. Wij laten aan hand van berekeningen voor kwantumpunten en atomen zien
dat een nauwkeurige modellering van de fysische lokale energiedichtheid voor elk
correlatieregime ook de tot nu toe onbekende eerste afgeleide van de lokale en-
ergiedichtheid in ten minste één van de twee referentiesystemen vereist. Aanvullend
vergelijken wij de SCE lokale energiedichtheden met lokale energiedichtheden van
het PC model en wij beschouwen in het gestrekte H2 molecuul de toepasbaarheid van
de Lieb-Oxford grens voor lokale energiedichtheden.

In hoofdstuk 5 introduceren wij de KS-SCE methode welke de SCE globale energie-
dichtheid als benadering voor de fysische globale energiedichtheid gebruikt en een
eerste afgeleide van de energiedichtheid vermijdt. Zelfconsistente oplossingen van de
spinbeperkte KS vergelijkingen met de SCE dichtheidsfunctionaal worden beschouwd
voor sterk gecorreleerde kwantum draden en ééndimensionale modellen voor atomen
en chemische bindingen. Wij laten zien dat de KS-SCE methode systemen met
weinig en sterke correlatie goed beschrijft en dat er voor systemen tussen deze
limieten correcties nodig zijn. Afsluitend worden correcties voorgesteld welke de
eerste afgeleide van de globale energiedichtheid bijhalen en op postfunctionaal niveau
gebruikt worden.

107



108 Samenvatting

De afgeleiddiscontinuïteit van de SCE dichtheidsfunctionaal wordt in hoofdstuk
6 bekeken. In het algemeen stelt de afgeleiddiscontinuïteit een analytisch kenmerk
van de exacte dichtheidsfunctionaal voor maar is niet gemodelleerd door traditionele
dichtheidsfunctionalen. Omdat bekend is dat de SCE dichtheidsfunctionaal exact
wordt voor systemen in de sterke correlatie limiet, beschouwen wij kwantumpun-
ten en kwantumdraden in het regime van sterke correlatie. Daarbij wordt het SCE
concept voor systemen met een gebroken aantal elektronen afgeleidt. Verder laten
wij zien dat de SCE dichtheidsfunctionaal zelf in systemen buiten de sterke corre-
latie limiet een afgeleiddiscontinuïteit vertoont, hoewel deze minder op de exacte
afgeleiddiscontinuïteit lijkt als het systeem ver van de limiet gaat liggen.

Onderzoekt aan de isoelektronische serie van helium stellen wij in hoofdstuk 7
voor. Wij tonen aan dat de KS-SCE methode in de anionen uit deze serie de binding
van het tweede elektron aan de atoomkern sterk overschat, maar verbetering mogelijk
is door correcties van de SCE lokale energiedichtheid. Deze correcties gaan uit van
het homogene elektronen gas (HEG) en zijn makkelijk zelfconsistent op te lossen.
Door de HEG correcties wordt een zelfinteractiefout geïntroduceerd, waarbij blijkt dat
deze minder erg is dan bij traditionele dichtheidsfunktionalen.

Een samenvatting en vooruitzicht wordt in hoofdstuk 8 gegeven. Mogelijkheden
ter voorkoming van de zelfinteractiefout in de HEG correcties van de SCE dichthei-
dsfunctionaal worden geïllustreerd en eerste resultaten voor de simulatie van lad-
ingsoverdracht op lange afstand middels time-dependent DFT in en ééndimensionaal
H2 molecuul worden kort benadert.
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