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GENERAL CO-MOTION FUNCTIONS FOR ONE-DIMENSIONAL DENSITIES

Integer electron numbers

Given a one-dimensional (1D) N -electron density ρ(x), we aim at building N−1 co-motion functions f2(x), ..., fN (x)
that satisfy the condition of total suppression of fluctuations [1, 2],∫ fi(x)

fi−1(x)

ρ(x′) dx′ = 1, (1)

and minimize the expectation of V̂ee, yielding the functional V SCE
ee [ρ] [2–4],

V SCE
ee [ρ] =

∫ ∞
−∞

ρ(x)

N

N−1∑
i=1

N∑
j=i+1

wb(|fi(x)− fj(x)|)dx =
1

2

∫ ∞
−∞

ρ(x)

N∑
i=2

wb(|x− fi(x)|)dx, (2)

where we have used the convention f1(x) ≡ x, and wb(x) is the electron-electron interaction. Equation (1) is equivalent
to ∫ fi(x)

x

ρ(x′) dx′ = i− 1. (3)

If we define the function

Ne(x) =

∫ x

−∞
ρ(x′) dx′, (4)

we see that Eq. (3) becomes

Ne[fi(x)]−Ne(x) = i− 1, (5)

yielding the to co-motion functions

fi(x) = N−1e [Ne(x) + i− 1]. (6)

Equation (3) is actually only valid for fi(x) > x restricting the domain of x to x < N−1e (N + 1− i). We can find the
second branch of fi(x), for x > N−1e (N + 1− i), by considering that in this case Eq. (3) becomes∫ x

fi(x)

ρ(x′) dx′ = N − (i− 1). (7)

The co-motion functions for the entire domain then read

fi(x) =

{
N−1e [Ne(x) + i− 1] x ≤ aN+1−i
N−1e [Ne(x) + i− 1−N ] x > aN+1−i,

(8)

where ak = N−1e (k).
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FIG. 1: (color online) The SCE solution for a density integrating to Q = 2.5 electrons. For some values of x = xr we find 2
other strictly correlated positions (the density contains 3 electrons; case in the left panel), but for other values of x = xr we
can only find one co-motion function (we find only 2 electrons in the density, the 3rd one is pushed to infinity; case in the right
panel).

Extension to Fractional Electron Numbers

If the density ρ(x) integrates to Q = N +η electrons, with 0 ≤ η ≤ 1, we see that Eq. (1) can be satisfied for certain
values of x up to i = N + 1 (so that there are N + 1 electrons in the density) and for certain values of x only up to
i = N (only N electrons can be found in the density). This is illustrated in Fig. 1 for the case Q = 2.5 electrons. By
inspection, we see that Eqs. (8) become now Eqs. (8) of the paper,

fi(x) =


N−1e [Ne(x) + i− 1] x < aN+1+η−i

N−1e [Ne(x) + i−N − 2] x > aN+2−i

∞ otherwise,

(9)

with the same definitions of Ne(x) and ak and i ∈ [2, ..., N + 1]. Notice that in this case it is crucial to use the second
expression of V SCE

ee [ρ] in Eq. (2), as discussed in the paper (with the sum now running up to N + 1).
The functional derivative of V SCE

ee [ρ] can be obtained exactly by integrating the 1D equivalent of Eq. (4) of the
paper [5–7],

ṽ′SCE[ρ](x) =

N+1∑
i=2

w′b(|x− fi(x)|)sgn(x− fi(x)), (10)

with boundary condition ṽSCE[ρ](|x| → ∞) = 0. For fractional electron numbers Q = N + η this equation yields the
functional derivative of V SCE

ee [ρQ] if the co-motion functions of Eqs. (9) are used.

CO-MOTION FUNCTIONS FOR A SYMMETRIC 1D DENSITY WITH N + η ELECTRONS

If the density is symmetric with respect to the origin, ρ(x) = ρ(−x), we can define the co-motion functions in a
way that allows for a straightforward generalization to the two- and three-dimensional spherically-symmetric cases.
Consider now the function Ñe(x) defined only for x ≥ 0,

Ñe(x) = 2

∫ x

0

dx′ρ(x′), (11)

where the factor 2 takes into account the 1D volume element, and limx→∞ Ñe(x) = N + η. The positive co-motion
functions define now only the distance of the N electrons from the origin. We can obtain these “radial” co-motion
functions from Eq. (9) by using the identities

Ne(x) =
Ñe(x)

2
+
N + η

2
, N−1e (x) = Ñ−1e (|2x−N − η|). (12)
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FIG. 2: (color online) The spin-restricted self-consistent KS highest occupied eigenvalue (HOMO) for the H atom, when the
number of electrons Q varies continuously between 0 and 2. The KS SCE and KS LDA results are compared with the exact
values.

This yields

fi(x) =


Ñ−1e [Ñe(x) + 2i− 2] x < ãN+2−2i+η

Ñ−1e [|Ñe(x)− 2(N + 2− i)|] x > ãN+4−2i−η

∞ otherwise,

(13)

where ãk = Ñ−1e (k) with the convention that ãk = 0 when k < 0. When η = 1, these co-motion functions agree with
the ones of Eqs. (44)-(46) in Ref. [3] for N + 1 electrons. Minimization of the electron-electron repulsion Vee(x) for a
given reference position x,

Vee(x) =

N∑
i=1

N+1∑
j=i+1

wb(|fi(x)− fj(x)|), (14)

decides whether the functions fi(x) are at the left or at the right of the origin. This is the 1D equivalent of the 3D
angular minimization of Ref. [3], which (only in the 1D case) can be simplified by using the co-motion functions of
Eqs. (9).

GENERALIZATION TO SPHERICALLY SYMMETRIC DENSITIES

As discussed in Ref. [3], for spherically symmetric densities we can define radial co-motion functions fi(r) that give
the distances from the center of symmetry of the density as a function of the distance r of the first electron. The
relative angles can then be minimized for every r [3].

By defining in three-dimensions

Ne(r) =

∫ r

0

4πu2ρ(u)du, (15)

we obtain again the same Eqs. (13) with x replaced by r, thus generalizing the radial equations found in Ref. [3] to
fractional electron numbers N + η.

HARMONIC AND COULOMB EXTERNAL POTENTIALS

When the external potential of a finite many-electron system is Coulombic, it is not possible to reach the extreme
low-density (or strong-interaction) limit, because the system becomes unbound. We will present an extensive study of
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FIG. 3: (color online) The Hooke’s atom (N = 2 electrons in the external harmonic potential 1
2
ω2r2) self-consistent KS SCE

energies (red dots) are compared with the exact energies (blue curve, [9]) as a function of the spring constant ω. We see that
when ω → 0 KS SCE approaches asymptotically the exact curve.

negative ions with the KS SCE approach elsewhere. Here, we show the KS SCE result for the H atom when we vary
the number of electrons between 0 and 2 (Fig. 2). This result is, as in all our work, obtained in the spin-restricted
formalism, so that the vertical change in Fig. 2 of the KS SCE results at Q = 1 is exactly the same we would observe
in the H atom with 1

2 spin-up and 1
2 spin-down electrons, which is often considered a paradigmatic model for a Mott

insulator [8]. In other words, the KS SCE energy (of which the HOMO in Fig. 2 is the derivative with respect to Q)
has the correct behavior in the spin degree of freedom (flat plane), but, as wee see from Fig. 2, it is not perfectly
linear for 1 < Q < 2. Notice also that KS SCE is able to bind H− (negative HOMO at Q = 2) something that neither
Hartree-Fock nor DFT with local or semilocal functionals is able to do.

The reason why KS SCE does not yield the exact result in this case is that H− is a system which is not close enough
to the regime in which the SCE functional becomes very accurate. The Hooke’s atom with very small spring constant,
instead, supports bound states with very low density, where KS SCE becomes asymptotically exact, as shown in Fig. 4
of the Letter. In Fig. 3 of this Supplemental Material we also show that, energetically, the KS SCE result approaches
indeed the exact one in the limit of small ω.
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