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Anions and radicals are important for many applications including environmental chemistry, semi-
conductors, and charge transfer, but are poorly described by the available approximate energy density
functionals. Here we test an approximate exchange-correlation functional based on the exact strong-
coupling limit of the Hohenberg-Kohn functional on the prototypical case of the He isoelectronic
series with varying nuclear charge Z < 2, which includes weakly bound negative ions and a quantum
phase transition at a critical value of Z, representing a big challenge for density functional theory. We
use accurate wavefunction calculations to validate our results, comparing energies and Kohn-Sham
potentials, thus also providing useful reference data close to and at the quantum phase transition. We
show that our functional is able to bind H™ and to capture in general the physics of loosely bound
anions, with a tendency to strongly overbind that can be proven mathematically. We also include
corrections based on the uniform electron gas which improve the results. © 2014 AIP Publishing

LLC. [http://dx.doi.org/10.1063/1.4871018]

. INTRODUCTION

Density functional theory (DFT),! in its Kohn-Sham
(KS) formulation,” has been areal breakthrough for electronic
structure calculations. The key idea of KS DFT is an exact
mapping” between the physical, interacting, many-electron
system and a model system of non-interacting fermions with
the same density, allowing for a realistic treatment of the elec-
tronic kinetic energy. All the complicated many-body effects
are embedded in the so-called exchange-correlation (xc) en-
ergy functional. Although, in principle, the exact xc func-
tional is unique (or “universal”), in practice a large number of
approximations has been developed in the last 30 years, often
targeting different systems, different properties, and different
phenomena. Common practice for DFT users is nowadays to
consult the (rather extensive) benchmark literature to choose
the approximate xc functional most suitable for the problem at
hand. This reflects the intrinsic difficulty of building a general
approximation able to recognize and capture, for each class
of systems or process, the many-body effects relevant for its
description.

Even in this “specialized-functional” world, there are still

other examples of strongly correlated systems whose physics
is not captured by the standard approximations. A key prob-
lem when dealing with strong (or “static”) correlation is that,
similarly to unrestricted Hartree-Fock (HF), approximate KS
DFT tries to mimic the physics of strong correlation and near
degeneracy with spin and spatial symmetry breaking, which
in complex systems may occur erratically and can be very sen-
sitive to the choice of functional.* This easily leads to a wrong
characterization of several properties and to discontinuous
potential energy surfaces.® Being able to capture strong elec-
tronic correlation within KS DFT without resorting to sym-
metry breaking is arguably one of the most important prob-
lems of electronic structure theory.*”’

The mainstream strategies to construct approximate func-
tionals consist of making an ansatz for the dependence of the
xc functional on the relevant “ingredients” such as the local
density, the local density gradients, the KS kinetic orbital en-
ergy, the KS orbitals, etc.® The ansatz can be constructed in
order to fulfill as many exact constraints as possible given the
ingredients used.® Some authors also introduce a (sometimes
very large) number of parameters to be fitted to a specific data
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electronic kinetic energy, and it has been successfully applied
to model low-density quantum wires'*'* and quantum dots. "’
In those systems, the SCE functional has been shown capa-
ble of capturing the physics of charge localization without
introducing magnetic order or any other symmetry breaking.
In other words, the SCE functional achieved what was often
regarded as practically impossible: making non-interacting
electrons behave as strongly correlated ones, showing that re-
stricted KS DFT with the appropriate functionals can yield
results beyond mean-field theory.

Using the SCE functional to address chemical problems
also seems very attractive. It provides a new, well defined,
starting point to build approximate functionals, deeply differ-
ent from mainstream approaches. The new ingredient here is
the non-locality encoded in the SCE functional and poten-
tial, which can capture the physics that is missed by stan-
dard approximations. Chemistry, however, is more challeng-
ing for the SCE functional than low-density nanostructures,
because the kinetic energy and the electron-electron repulsion
often have similar importance. For example, in a stretched
bond only the bonding electrons are strongly correlated, while
the others are not. Indeed, in a recent paper,'® it has been
shown that KS SCE dissociates properly a single chemical
bond without introducing symmetry breaking, but it over-
correlates in all other aspects. This evidently requires cor-
rections to the SCE functional, which can be built either by
including higher-order terms in the expansion at infinite cou-
pling strength!'! or by considering rigorous local and semilo-
cal approximations.'*

Both low-density nanostructures and stretched bonds in-
volve charge localization due to strong spatial correlations,
which is, by definition, the case in which SCE tends asymp-
totically to the exact xc functional. To gain insight into the
performance of the SCE functional for other classes of chem-
ical systems, we consider here a conceptually simple problem
in which electronic correlation plays a crucial role. Despite
its simplicity the problem nonetheless is very challenging for
both DFT and other approaches. This is the anions of the He
isoelectronic series, described by the Hamiltonian (in Hartree
atomic units used throughout the paper)

A | v2 lVz zZ Z 1 {

H_—E,—Ez—z—r—2+r—lz. (1)
with Z < 2. Accurate wavefunction calculations'” have shown
that when the nuclear charge Z is lowered and crosses a criti-
cal valuie 7 ... 2~ 0901103 3 aunantum nhasce tran<ition occurs
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eigenvalue.'® In the complete basis set limit (here by inclu-
sion of plane waves), a positive orbital eigenvalue would lead
to an unbound electron extending over the entire space and,
consequently, within the finite basis set, orbitals with positive
orbital energies should not be occupied. In practice, however,
convergence of these calculations can only be achieved if the
orbital with positive eigenvalue is occupied, corresponding to
an electron artificially bound by the finite basis, a procedure
which has been criticized."”

It is worth mentioning that the failure of standard DFT
approximations to bind anions properly is often attributed to
the self-interaction error (SIE). However, despite being self-
interaction free, the Hartree-Fock method fails for H™, yield-
ing a negative binding energy for the second electron in con-
tradiction to experiment.”’ Thus in this case, it is correlation
that stabilizes the system, so SIE is not the only problem.

In this work we test the KS SCE functional for the hamil-
tonian of Eq. (1), focusing on the anions close to the quantum
phase transition. We compare our results (including energies,
densities, and KS potentials) with those from a very accu-
rate wavefunction treatment and from standard approximate
xc functionals. We also consider local corrections to KS SCE,
and we analyze some exact properties of the density and of
the KS potential at Z,.

Il. THEORETICAL METHODS

A. Variational calculations from accurate
wavefunctions

Very accurate energies of the He isoelectronic series with
nuclear charge Z between one and ten,”' and for weakly bound
anions close to and at the quantum phase transition,'” have
been obtained using basis functions that depend explicitly on
the interelectronic coordinates. For the latter the wavefunc-
tion was a linear combination of 476 basis functions consist-
ing of 244 modified’' Frankowski-Pekeris®”> basis functions
oY (2Zks,2Zkt,2Zku), where

n.l.m.j
Gt (5, 0 w) = 5" 1w (Ins) e ™2, (2)

and 232 Frankowski® basis functions ¢

n.l.rn.j(zzks~ ZZk’.
2Zku), where

On it 5. 1 u) = s"1u" (Ins) (e £e e (3)

Here, k and ¢ are flexible scaling parameters and s, ¢, and u
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TABLE 1. Approximately optimal values of k and ¢ used for several values
of Z in the accurate wavefunctions. The first row is from Ref. 17.

Z k c
0.9110289 0.60672 0.448
0.92 0.67 0.41
0.93 0.68 0.40
0.94 0.69 0.39
0.95 0.70 0.38

approximately optimal values of k and ¢ used for several val-
ues of Z in the present paper.

B. Restricted KS DFT with local, semilocal,
and hybrid functionals

We quickly review some basic aspects of Kohn-Sham
density functional theory, as this helps in clarifying the con-
cepts behind the less familiar SCE functional, introduced in
Subsection II C.IFor any N-electron system in the external po-
tential Ve, = .N=1 Vext(r), Hohenberg and Kohn' (HK) have
proven the existence of a “universal” density functional F[p],
which in Levy’s constrained minimization formalism?”” is

Flpl = min (|7 + Ve |W), )
where “W — p” means that the minimization is carried over
all fermionic wavefunctions yielding the same one-electron
density p(r), so that the ground-state energy can be obtained
by minimizing the energy functional

r T .
Ey= m;’n Flpl+  ven(r)p(r)dr . (6)

Since it is extremely difficult to construct approximations
for F[p] that encode the fermionic nature of the electrons,
Kohn and Sham have introduced another functional, the non-
interacting KS kinetic energy functional,

Llpl = min(W|T W), @)
which defines a non-interacting system of fermions with the

same density of the physical, interacting, one. The HK func-
tional is then partitioned as

Flpl = Ti[pl + Ulpl + Exc[pl, (8)
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where uy is the Hartree potential and v, is the exchange-
corrqlation potential. The density is obtained as p(r)
=, |¥i(r)]?, with the sum running over the occupied or-
bitals, and the KS equations are solved self-consistently.

The simplest approximation for E,.[p] is the local den-
sity approximation (LDA), defining the exchange-correlation
energy as a functional of the local density alone. The next lev-
els of refinement are the generalized-gradient approximations
(GGA), obtained by including the gradient of the local den-
sity Vp, and the meta-GGA functionals which use also the
local Laplacian of the d?nsity V2p and/or the local kinetic
energy density 7(r) = |V1ﬁ,—(r)|2. For the special case of
the two-electron systems considered here, the Hartree-Fock
method becomes equivalent to KS DFT with the exact ex-
change functional, as the non-local HF exchange potential re-
duces to a local one-body potential. For systems with higher
electron number the non-local Hartree-Fock exchange can be
transformed into a local potential via the optimized effective
potential method, yielding a well defined orbital-dependent
functional (called exact exchange). Hybrid functionals are ob-
tained by mixing a fraction of single determinant exchange
with GGA or metaGGA functionals, and are normally com-
puted using a non-local potential, a treatment outside the KS
framework.

C. Restricted KS DFT with the SCE functional

The HK functional of Eq. (5) and the KS kinetic energy
functional of Eq. (7) can be seen as the values at A = | and
A = 0 of a more general functional F;[p], in which the
electronic interaction is rescaled by a coupling strength
parameter A,

2> . v/
Fx[pl=\inir; U|T + AV, |V . (11)

The SCE functional, first introduced in the seminal work
of Seidl and co-workers,”®?’ is the strong-interaction limit,
A — o0, of Fy[p], which corresponds to minimizing the
electron-electron repulsion alone for a given density p,

Ve Flpl = min (W Ve |W). (12)

L PR S T T T AP TR 7 o o B R i W
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indistinguishability of the N electrons,

filr)y=r,

f>(r) = f(r),

fi(r) = f(f(r)),

fi(r) = f(f(f(r))), (14)

g&gg(r)»gf r.

N times
The minimizing N-electron density |W(ry,..., rN)l2 in
Eq. (12), which becomes a distribution in this limit,'% 303!

is the strictly correlated state:

|\pSCE(rl~ r, , rN)|2
1 ¢ (r)
= dl‘thS(l'l —f,0)(r)
]

x 8(ry — f0)(r)) -+ - 8(ry — fvy(r),  (15)

where g denotes a permutation of 1, ..., N. Equations (13)
and (14) together with the propegties of the Dirac §-
function guarantee that p(r) =N |Wscg(r,ra, ..., ry)?
dry ---dry. In terms of the co-motion functions, the SCE
functional is'%-32

T o

. 1
VS(E[P] =- d'r p(r) S (16)
- 2 _, Ir—fi(n)]
and its functional derivative
Ve lpl
sce(r) = — 17
UscE(T) 3p(0) (17)
can be obtained from the equation'*'*
¥ o)
V eep(r) = — 1 . 18
Usce(r) . ool (18)

which has a simple physical meaning: as the position r of
one electron fixes all the relative distances, the net electron-
electron repulsion acting on an electron at r becomes a func-
tion of r alone, and can be represented as the gradient of a
one-body potential. Equation (18) is a very powerful shortcut
to compute the functional derivative of the highly non-local
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can be easily computed via Eq. (16). Our total energy func-
tional is then i

Elpl = T,[p] + Vopl +  p()veu(r)dr.  (20)

By varying E[p] with respect to the single-particle orbitals
appearing in T [p], one obtains the usual KS equations,
so that Eq. (19) is completely equivalent to making the
approximation

E..[p] ~ V3[p] = Ulpl, (21)

and thus v,.(r) & vgcg(r) — uy(r). The minimization of our
energy density functional of Eq. (20) reduces then to solving

the standard restricted KS equations self-consistently:
- *

1_,
_EV_ + vscelp](r) + vew(r) Yi(r) =€ Yi(r).  (22)

Notice that the self-consistent KS SCE total energy that we
obtain in this way is always a lower bound to the exact one.
In fact, since the minimum of a sum is always larger or equal
than the sum of the minima, for the exact ground-state density

we have
g 1] 1]

FIpl+  p e = Tlpl + Vol 4+ p v (23)

This inequality becomes even stronger when we minimize
the right-hand side by solving self-consistently the KS
SCE equations. The SCE functional is also self-interaction
free, as th,CE[p] = (0 for any one-electron density. Thus,
as EXSSCE < Eoact and EXS 5CF = EQ% the self-consistent
KS SCE method will certainly bind all the anions of the He
isoelectronic series that are physically bound, and its error
will always be towards overbinding, providing a lower bound
for Z.;, which, however, turns out to be not very tight (see
Sec. III).

It is also useful to represent graphically the approxi-
mation made in KS SCE in terms of the standard adiabatic
connection of KS DFT*? (see Fig. 1). By denoting W, [p] the
minimizing wavefunction in Eq. (11), and by defining the in-
direct part W;[p] of the electron-electron repulsion at cou-
pling strength A,

Wilpl = (Wilpl| Ve[ W51 01) — Ulpl, (24)

one obtains the well-known eﬁ,rct formula® for E..[p].

1

Ei.lpl=  Wilplda. (25)
0
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FIG. 1. The KS SCE approximation from the point of view of the adiabatic
connection of Eq. (25). We have reported W;[p] as a function of A for a
typical weakly correlated and a typical strongly correlated system. The area
between W; [p], the A-axis and the vertical lines corresponding to A = 0 and A
= 1 gives the exchange-correlation energy E,.[p]. The KS SCE approximates
W;.[p] with its value at A — oo for all A, and thus the xc energy with the
area of the rectangle limited by Wao[p], the A-axis, and the vertical lines
corresponding toA = O and 4 = 1.

one to evaluate Vef,CE[p] and its functional derivative vgcg(r)
in a different way, bypassing the co-motion functions. In the
special case of spherically symmetric densities, like the ones

considered here, an explicit solution is known'" in terms of
the function N,(r),
1
N.(r)= 47tx2p(x)dx (26)

0

and its inverse N, '. For a N = 2 system, the two electrons
in the SCE solution are always opposite to each other with
respect to the nucleus (maximum angular correlation), at a
relative angle 7. Their distances from the nucleus, r; = rand
r» = f(r), are related by the single co-motion function

f(r)=N"2 = N.(r)]. (27)

Equations (26) and (27) clearly show the non-local depen-
dence of fir) on the density. The SCE potential vscg(r) is
then simply obtained by integrating the spherically symmetric
equivalent of Eq. (18),
1

[r+ f(nP
with boundary condition vscge(r — oo) = (0. Notice that
vsci(r) has the correct asymptotic behavior of the
Hartree plus xc potential, vgce(r — 00) ~ 1/r, since f(r
— 00) — 0. This is true for the general N-electron case also,

since the correct (N — 1)/r asymptotic leading term can be
cirmilarly Aarmvadl) fram Ba (19

Vsep(r) = — (28)
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where T, [p] (kinetic correlation energy) is the difference be-
tween the true kinetic energy and the KS one,

T.lpl = (Wsilpl| T|Wazilp]) — Tilpl, (30)

and Vl,‘f,[p] (decorrelation energy'>*’) is the difference be-
tween the true electron-electron repulsion energy and the SCE
value,

VaIpl = (Wasi[pl Vee [Wszi[p]) — VEE[pl. (3D

Both corrections are evidently always positive. A simple way
to construct the correcting term 7,.[p] + V;f,[p] is to make a
local density approximation, which can be defined as the cor-
rection that makes Eq. (29) exact when the density p(r) be-
comes uniform,

mm

d*r p(r) Tt [p(r)] + v;’elp(r)];.
(32)

TP pl + Vi P p) =

where 1.(p) and v:,’c(p) are the kinetic correlation energy per
particle and the electron-electron decorrelation energy per
particle of the homogeneous electron gas (HEG) of density
p. They can be easily obtained as

t(p) + v (p) = €xc(p) — €scr(p), (33)

where €,.(p) and esce(p) are, respectively, the exchange-
correlation energy per particle and the indirect part of the SCE
interaction energy per particle for the HEG. The latter can be
obtained by considering that in the external potential due to
an infinite uniform background with positive charge density
pt = (‘—:nrf)_l the minimum possible electron-electron re-
pulsion is attained with the electrons localized at the sites of
the bee crystal with lattice parameter a = 2(/3)"3r,. A uni-
form electronic density p = p* is constructed by taking a lin-
ear superposition of all the possible origins and orientations
of the crystal. In other words, in the simple uniform-density
case, the co-motion functions are just the lattice vectors of the
bee crystal with origin in the reference electron, whose posi-
tion is distributed uniformly. This means that for all values of
the density parameter r; the SCE energy of the uniform elec-
tron gas is equal to the low-density leading term of the HEG
energy,

dy

. 34
rs(p) 4

esce(p) = —
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to taking as correction only

1m

Vel el = d'r po)ul, [p(r)), (35)
where vf,’e(rx) is obtained by subtracting from Eq. (33) the ki-
netic correlation contribution 7. = —dir(rxe_“). We call this
approximation KS SCE+LV,, 4. ’

lll. RESULTS
A. Accurate solution and exact properties at Z,;

Before presenting and discussing the KS SCE results, we
extend the work of Umrigar and Gonze?” by studying the ac-
curate densities and KS potentials obtained from the wave-
functions of Sec. II A close to the quantum phase transition.
The densities and KS potentials (obtained by inversion of the
KS equations)37 for selected values of Z < | are shown in
Fig. 2.

The exact density of an atomic or molecular system
is known to decay (with exceptions when the ground-state
of the ion is not asymptoti&ally accessible by symmetry)
as®™ 0 p(r — o0) ~ exp(—2" 21, r), an expansion which is
valid for 1/r < I,, where I, is the ionization energy. When
Z — Zei (I, — 0) the density remains compact, in agreement
with the rigorous result of Ref. 41, where it has been proven
that the density at Z;, satisfies

C_(a)r-S/z—se—zml—z..,..)rl'-"

< p(r) < C(@)r 22802l (36)

where § is an arbitrary small positive number and C.(8) are
constants depending on §.

We can further understand the asymptotic decay of the
density at Z.; by studying the corresponding differential

r:/r(r)

0.05

0.041

003 F —_—7=1
== Z=0.95
0.02
-eee Z=092

0.01
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#plr)
0.035
— accurate
0.030F

Q) === this work (Eq. 38)
0.025
\ ===+ Hoffmann—Ostenhof (Eq. 36)
0.020 o
0015F ™,
0.010F

0.005

FIG. 3. Comparison of the long-range behavior of ~ p(r) at Zyi obtained
from the asymptotic decay expressions in Egs. (36) and (38) with the almost
exact result obtained from the wavefunction in Sec. IT A.

equation®® for ./p (which for a N = 2 singlet coincides with
the KS equation). At the quantum phase transition with the
asymptotic potential to fourth order’”-*" this equation is

- $_ b
|, Z-N+1 1

22T L0 —

AL ; 5 pr)=0. (37)

By solving Eq. (37) asymptotically (r — 00), we obtain, order
by order, a solution for the leading terms to order o™,

e—‘k‘ﬁﬁl 3 3
r3/2 + 8arl2

plr — 00) ~

128a2 r
il
+ 15 405 (38)
102443 372 32768a* r?

with a = /2(=Z + N — 1). This decay agrees to leading or-
der with Eq. (36). The accurate density at the quantum phase
transition together with the decays from Egs. (36) and (38)
are displayed in Fig. 3, where in both cases the proportional-
ity constant has been adjusted to match the accurate density
at the end of the radial grid (r &~ 100). Notice that Eq. (37)
implies that for the exact KS system (which yields the exact
ground-state density) the equality eyomo = —1,, also holds at
Z = Zyi, when I, = 0.

From Fig. 2 we see that the KS potentials have a bump
at intermediate length scale. This bump increases for smaller
Z as can be expected from the asymptotic first order contribu-
tion at large r, vgs(r — 00) = (1 — Z)/r that will be positive
for Z < 1. The bump is present also for the Hydrogen anion,
where this first order contribution vanishes.

In Fig. 4 we show the correlation potentials for selected
valnee nf 7 We caea that ac wae foaiimd in Raf 27 the
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accurate correlation potential close to the nucleus has a nearly
quadratic behavior. In Refs. 42 and 43 it has been shown that
the linear term in the correlation potential is due to the kinetic
contribution, which, thus, turns out to be very small.

B. Z. from KS-DFT with standard functionals
and from KS SCE

For the He isoelectronic series with Z < 2 we solved self-
consistently the restricted KS equations with various approxi-
mate functionals. Calculations for the HF (or exact exchange)
method, KS LDA, KS SCE, and KS SCE with the two lo-
cal corrections of Sec. II D were performed with a numerical
code developed in our group. We chose the Perdew-Wang-
92 functional (PW92)*® LDA parametrization. To compare
our calculations with the available standard approximations
we have further performed restricted KS-DFT calculations
with the Amsterdam Density Functional package (ADF).*
From the GGA class of functionals we chose PBE,* from the
metaGGA class the revTPSS*® functional and for the hybrid
functional we chose B3LYP.*"-3" If not mentioned otherwise,
all ADF calculations were carried out in the even-tempered
(ET) QZ3P basis supported by 3 diffuse s-functions with the
parametrization of Hydrogen.’! To assess the quality of the
basis set we also performed KS-LDA (PW92 functional) cal-
culations with the ADF package and compare them to our nu-
merical solution of the KS equations.

We define the critical nuclear charge Z.; for the various
DFT approximations to be the value of Z at which either the
ionization energy I, = Ey_; — Ey becomes smaller than 0 or
the HOMO eigenvalue € yopmo becomes positive, whichever is
larger. Although the equality enomo = —1, does not hold in
general for approximate functionals, we invoke the HOMO
eigenvalue criterion to avoid the conceptual and numerical is-
sue of occupying orbitals with a positive eigenvalue already
discussed.

Table II shows the predicted Z; for the quantum phase
transition together with the corresponding ionization energy
I, = Ey-1 — Ey—> and the HOMO energies for the various
approximations. Of the DFT approximations considered only
the SCE functionals (SCE and SCE with local corrections)
and the hybrid functional are able to bind the Hydrogen an-
ion. The hybrid functional however, yields an unphysical de-
scription of the bound anion as we will further discuss below.
Remarkably, all the standard functionals at different levels of
annroximation vield a similar valie of 7. =~ 1 2 Thic chows

J. Chem. Phys. 140, 18A532 (2014)

TABLE II. Z.; with corresponding negative ionization energy —I,
= Ey-=> — Ey-; and HOMO energies for various approaches.

Zerit €HOMO —~1Ip
Accurate 09110 0.0 0.0
Numerical
HF 1.0312 —0.05809 0.0
KS-LDA, PW92 1.2244 0.0 —0.18509
KS-SCE 0.7307 0.0 —0.05639
KS-SCE+LDA, PW92 0.9474 0.0 —0.05253
KS-SCE+LVee.d, PW92 0.9012 0.0 —0.04964
ET-QZ3P+3diffuse
KS-LDA, PW92 1.2240 0.0 —0.18477
KS-GGA, PBE 1.2303 0.0 -0.19179
KS-metaGGA, revTPSS 1.2120 0.0 o
KS-Hybrid, B3LYP 0.6932 —0.0041 0.0
(KS-Hybrid, B3LYP)? 1.1403 0.0 —0.15909

“Not supported by ADE*
PET-QZ3P basis.

H™ is displayed for several methods, the KS-SCE yielding
the most compact density. Physically, this is due to the fact
that the two electrons, being perfectly correlated, can avoid
each other as much as possible and can get much closer to the
nucleus to lower the total energy.

The local corrections to the SCE functional improve con-
siderably the predicted Z; and give a more realistic descrip-
tion of the electronic interactions. We observe that the KS-
SCE+LDA density is too spread out compared to the accurate
data (e.g., Fig. 5). This can be attributed to the self-interaction
error that is introduced by the LDA correction which is obvi-
ous from Eq. (33)—the energy densities do not vanish for a
density integrating to 1.

In Fig. 5 we display also the Hartree-Fock density. It is
possible to do this because the HOMO eigenvalue is nega-
tive even though Ey_; < Ey_>. (If the electron number were
treated as a variational parameter, the minimum energy would
be attained for N < 2.) We see that the HF density resem-
bles the accurate density more closely than the density from
other functionals considered. This supports the point of view
of Ref. 52, and the general idea of using HF densities as input
for DFT energies in the case of negative ions,”*>* even when
HF does not bind the last electron.

For the hybrid functional in the ET-QZ3P-3diffuse ba-
sis we obtain a negative eyomo and Ey—; > Ey_, for H™.
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FIG. 6. rzp(r) and vks for various Z for the KS-SCE (above) and KS-SCE+LDA (below) method.

Formally the hybrid thus binds the Hydrogen anion. When
inspecting the density however, one observes that it escapes
partially from the nucleus, as shown in Fig. 7. When remov-
ing the 3 diffuse basis functions from the basis set to prevent
the density accumulation in the outside regions, we obtain a
value of Z.;; in between that from HF and conventional DFT,
as expected.

We now discuss the Kohn-Sham and exchange-
correlation potentials for the self-consistent densities, dis-
played in Figs. 6 and 8. We see that the SCE total Kohn-
Sham potential does not develop the bump for Z = 1,
but only for smaller nuclear charges when the interelec-
tronic repulsion dominates over the weaker nuclear attraction
(Fig. 6). As already observed in Fig. 5, this corresponds to a
very compact density. For larger distances, the SCE potential
is in good agreement with the accurate one, as expected from
the absence of the self-interaction error in the SCE. From
Fig. 8 we also see that the SCE potential is quadratic close

to the nucleus, as can be easily proven analytically from
Eq. (28), since when r — 0 we have fir — 0) — o0, so that
Vgep(r = 0) = 0. This is in agreement with the findings of
Refs. 42 and 43, as there is no kinetic contribution in the SCE
potential.

Although the SCE functional approximates exchange and
correlation together, in Fig. 9 we show the SCE correla-
tion potential alone, obtained by subtracting from the xc
SCE potential the exchange potential constructed from the

ws(r)
0.03¢

0.02
= accurate

=== KS-SCE
-- KS-SCE+LDA
----- KS-SCE+LVee,d

0.01F

-0.01F = HF

~0.02
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FIG. 9. The self-consistent correlation potentials v.(r) from the bare KS
SCE method.

self-consistent KS SCE densities. We see that the SCE corre-
lation potential is always negative, in contrast to the exact one.
The positive part of the exact correlation potential is mainly
due to kinetic correlation effects™>® that are missed in the
bare SCE.

At least qualitatively, the bump for H™ in the total KS po-
tential is captured by the KS-SCE with the two local correc-
tions, though the bump is too pronounced, particularly in KS
SCE+LDA (see Fig. 8). This is also responsible for the over-
estimation of Z.; and can be partially attributed to the self-
interaction error. However, the self-interaction error present
in the KS-SCE+LDA approach is substantially different from
the self-interaction error in standard KS-LDA or KS-GGA. In
KS-LDA and GGA the self-interaction error manifests in the
wrong asymptotic decay of the KS potential (—Z=~ instead

of —%=2+l) KS-SCE has the correct —%£=Y+1 decay and

this is not altered by the exponentially vanisiling LDA con-
tribution upon going from KS-SCE to KS-SCE-LDA. The KS
SCE+LYV,. 4 is more attractive at short distance than the exact
KS potential, achieving error compensation with the overes-
timation of the bump (less severe than in the KS-SCE+LDA
method), which results in a good estimate for Z.; =~ 0.9012.
Of the methods studied, the KS-SCE approach with the local
corrections is the one in which the HOMO energy deviates the
least from the corresponding Ey — Ey_ | (see Table II).

The HF (or exact exchange) potential is also shown in
Fig. 8, although, once more, we have to keep in mind that in
this case Enx—> > Ey—, so that the system is not really physi-
cally bound.

C. Fractional electron numbers at Z= 1

J. Chem. Phys. 140, 18A532 (2014)

N =2 systems, as we increase the occupancy Q of the HOMO
orbital we should observe a jump in its energy at Q = 1. No-
tice that in the restricted KS method the conditions regarding
the spin degree of freedom®’ are automatically fulfilled, so
that the gap at Q = 1 is the same as the “Mott gap” for 1/2
spin-up and 1/2 spin-down electrons.

The KS SCE method needs, additionally, the construc-
tion of the SCE functional for fractional electron numbers.
This has been rigorously done in Ref. 62, and, in this case,
corresponds to setting the co-motion function f{r) of Sec. II C
equal to

@
N'2=N.r)] r>N'2-0Q)
flr)y= ~ 0 (39)

otherwise.

The physical meaning of Eq. (39) is very simple: the two elec-
tronic positions are always separated by a radial distance such
that the density integrates to 1 (total suppression of fluctua-

tions),
mf'lr)
4rx’p(x)dx = 1, (40)

so that for densities integrating to less than 2 there are val-
ues of r for which the second electron “cannot enter” in the
density.®

Figure 10 displays egomo for various approaches in the
restricted KS scheme. As observed before,®” the SCE func-
tional shows a vertical change in the HOMO energy even in
the restricted KS approach. A sharp step, however, is only
obtained with KS SCE in the extremely strong correlation (or
low-density) limit,%” from which H™ is still far. KS-SCE with
the two local corrections exhibits the same smoothed step, but
the self-interaction error leads to a non-constant HOMO en-
ergy between 0 < Q < 1. The HF curve we report here has
been obtained by keeping the occupancies of the two elec-
trons equal at all Q. This is what it should be compared in
the restricted case, and it is the situation encountered in re-
stricted HF when stretching a bond or expanding a lattice.”’
Finally, Fig. 10 allows for a determination of the maximum
number of electrons Q,,,x bound by the conventional DFT ap-
proaches. The results are compiled in Table III. We observe,
similarly to Z.;, that the predicted value of Q. 1s insensi-
tive to the level of approximation of the standard function-
als, further supporting the idea behind the model potential of
Ref. 61.
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TABLE III. Maximum number of electrons Q,,,, bound in the Hydrogen
nuclear potential for methods unable to bind H™.

Numerical ET-QZ3P+3diffuse
KS-LDA  KS-LDA KS-GGA KS-metaGGA  KS-Hybrid
(PW92) (PW92) (PBE) (revTPSS) (B3LYP)
Omax 1.71 1.71 1.70 1.73 1.75*

“By integrating over the inside region (0 < r < 13) in Fig. 7.

IV. CONCLUSIONS AND PERSPECTIVES

We have applied functionals based on the exact strong-
coupling limit of DFT to the loosely bound negative ions
of the He isoelectronic series, which are a prototypical case
for the delicate physics of anions and radicals. Whereas stan-
dard DFT functionals either do not bind anions or bind them
with unphysical long-range features in the charge density, the
functionals based on the strictly-correlated-electrons have a
rigorous tendency to overbind that can be mitigated by local
corrections. This shows that the SCE functional and its correc-
tions are able to capture many-body effects radically different
than the ones described by the standard functionals, although
improvements are still needed. In particular, one should aim
at building corrections based on correlation kinetic energy
effects'® and/or on exact exchange.'®

Besides improving the accuracy of the functionals based
on SCE, the challenge for the future is also to implement
SCE physics into routinely applicable approximations. This
can be done by either developing algorithms to evaluate the
exact SCE functional exploiting its formal similarity to an op-
timal transport problem,*”*! as in the pilot implementation of
Ref. 34, or by constructing new approximations based on the
idea of co-motion functions, i.e., by trying to build approxi-
mate and simplified co-motion functions. These, in turn, could
be used in a local interpolation along the adiabatic connection
that preserves size consistency.”

Finally, our study also provides reference data for the an-
ions of the He isoelectronic series close to and at the quantum
phase transition that can be valuable to test the accuracy of
new DFT approximations (see, e.g., Ref. 63 which presents
correlation potentials from RPA approaches that are good ap-
proximations to the true correlation potential).
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