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Abstract: In order to investigate charge resonance situations in molecular complexes, Wu et
al. (J. Chem. Phys. 2007, 127, 164119) recently proposed a configuration interaction method
with a valence bond-like multiconfigurational basis obtained from constrained DFT calculations.
We adapt this method to the Self-Consistent Charge Density-Functional-based Tight Binding
(SCC-DFTB) approach and provide expressions for the gradients of the energy with respect to
the nuclear coordinates. It is shown that the method corrects the wrong SCC-DFTB behavior
of the potential energy surface in the dissociation regions. This scheme is applied to determine
the structural and stability properties of positively charged molecular dimers with full structural
optimization, namely, the benzene dimer cation and the water dimer cation. The method yields
binding energies in good agreement with experimental data and high-level reference calculations.

1. Introduction

The description of neutral molecular clusters requires the
consideration of various contributions of the intermolecular
energy, including Pauli repulsion, polarization, electrostatics
(static multipole interactions), induction forces (multipole-
induced multipole interactions), and London dispersion. The
treatment of the electronic structure of singly ionized
molecular clusters also needs to consider charge resonance,
which may cause the charge to be partially or totally
delocalized over the molecular units and polarization con-
tributions due to the influence of the charge. Both lead to a
stabilization of the charged species as compared to the
analogous neutrals. A proper description requires correct
balance between charge delocalization and polarization
forces.

While Density Functional Theory (DFT) is an appealing
method for describing the electronic properties of clusters
with dozens, maybe hundreds, of atoms, at least in single
point calculations, most common functionals are known
to fail in properly describing dispersion forces. This is

the first handicap to deal with by treating molecular
clusters. The search for new functionals accounting for
dispersion1-9 (for a review, see ref 10) is a very active
field, while semiempirical corrections to standard DFT
calculations are also used.11-18 The description of charge
resonance in molecular clusters is another serious problem
in standard density functional approaches. Using the
Kohn-Sham formalism with these functionals, one arising
problem is due to the self-interaction of the delocalized
charge. Many investigations have addressed the analysis
and correction of the self-interaction error arising with
approximated DFT functionals (see, for instance, refs
19-38). This error is particularly prevalent in the dis-
sociation of radical cations.35,36 Similarly, a cationic
molecular dimer involving two identical units should
dissociate into one molecular cation and one neutral, but
in a restricted DFT scheme, the charge is asymptotically
equally shared by the two units, breaking the energy
additivity and further introducing a spurious Coulomb
interaction between the two moieties. Although such an
artifact is essential in the dissociation, it is also expected
to play a role all over the potential energy surface,
including the equilibrium geometries.
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A correct description of dissociation is in principle easily
obtained by the use of a multiconfigurational wave function.
It can be achieved by high-level methods like Configuration
Interaction39,40 (CI)-based methods (Multi-Configurational
Self-Consistent Field,41 MCSCF; Multi-Reference Config-
uration Interaction,42 MRCI) or Coupled Cluster43 (CC)
approaches (for a review, see ref 44) but at a high
computational cost. Such calculations may provide bench-
marks on reasonably small systems (essentially dimers) but
rapidly exceed today’s possibilities as soon as the molecular
units exceed a few tens of atoms.

One of the tracks for circumventing the drawbacks of the
present state DFT in an ab initio framework is to combine
CI, for describing long-range (lr) electron-electron interac-
tions, and DFT, for the short-range electron-electron
interactions (sr). This gave rise to the lr-sr formalism
following Savin’s formulation,45-48 enabling combinations
of Møller-Plesset (MP) perturbation,49-51 CC, and/or CI
approaches with DFT. This formulation is quite attractive;
nevertheless, its numerical cost is significantly larger than
that of a standard DFT calculation.

Alternatively, charge resonance (or excitation resonance)
is described quite simply in valence bond-like approaches52-55

by explicitly considering the multiconfigurational nature of
the wave function via the definition of a basis arising from
configurations in which the charge (or excitation) is localized
on a given fragment of the system. This is the essence of
the excitonic models originating from solid state physics (see
for instance ref 56 and references therein) but also used in
molecular materials and even biological systems. An ap-
plication to cationic molecular clusters of polycyclic aromatic
hydrocarbon (PAH) was published by Bouvier et al.,57

defining a resonance charge model based on frozen molecules
and parametrized from ab initio CI calculations on dimers.
Diatomics-in-molecule modeling of singly ionized rare gas
clusters can also be expressed in a valence bond picture with
a basis of atom-localized hole configurations and no internal
geometrical structure.58-60 That paved the way for extensive
simulations of the electronic and dynamical properties of
ionized rare gas clusters (see for instance Calvo et al.61,62).

More recently, the concept of a valence bond configuration
description in a DFT framework was proposed by the group
of Van Voorhis et al.63-69 to investigate charge delocalization
in mixed valence compounds exhibiting possible bistability
with the perspective of controlling charge transfer. They
developed a method combining Constrained DFT,63-65 used
to build charge localized configurations, with a small CI-
like scheme (CDFT-CI) to deal with charge delocalization
in extended systems. From the computational point of view,
it is extremely appealing for singly charged clusters, since
the static correlation associated with charge resonance is
treated by the CI-like scheme, which in this case is linear
scaling (as would be complete active space self-consistent
field CASSCF70 with a single hole in the MOs resulting from
the HOMOs of the individual molecules), and the dynamical
correlation is treated at the DFT level in a single configu-
ration scheme (whereas a CASSCF would need complement-
ing with dynamical correlation, for instance, CASPT271). For
addressing large systems, Self-Consistent-Charge Density-

Functional-based Tight Binding (SCC-DFTB)72-75 is inter-
esting since it is computationally faster than DFT. It is
derived from DFT through several approximations allowing
the use of tabulated overlap and interaction integrals.

As SCC-DFTB is derived from DFT, it also inherits its
lack of describing charge resonance with standard functionals
essentially due to the self-interaction error. Detailed analysis
of this problem in DFT proposals for self-interaction free
functionals were given by Grafenstein et al.35,36,76 Interest-
ingly, some of those schemes produce localized orbitals. The
transfer of such a concept within the DFTB framework would
certainly be of interest. However, self-interaction corrections
should introduce many centers’ contributions into the DFTB
parameters representing the Coulomb-exchange-correlation
contribution, beyond the two-center approximations for
electron-electron interaction integrals, a key point of the
DFTB efficiency. This would require analytical assumptions
for these terms, further parametrization, and transferability
checking.

Recently, we presented a preliminary application of the
CDFT-CI method in the SCC-DFTB framework also using
approximations to determine the CI couplings. We studied
coronene clusters with constrained geometries, because of
the lack of gradients.77 One of the interests of CDFTB-CI is
to be safe in regard to all dissociation channels, even
multicenter fragmentation.

In the present paper, we present the general adaptation of
the CDFT+CI method to the SCC-DFTB framework, with
the aim of future investigations of charge resonance in
molecular clusters with large sizes. This method is called
DFTB-VBCI (Valence Bond CI). In order to perform
geometry optimizations, we also derive analytical expressions
for the energy gradients with respect to the nuclear coordi-
nates. It allows us to achieve full structural optimization for
the benzene dimer and water dimer cations, respectively.

Section 2 is devoted to the presentation of the general
methodology, the DFTB-VBCI approach, and the derivation
of analytical expressions for the nuclear forces. In section
3, we benchmark the method on ionic benzene and water
dimers on the basis of comparisons with high-level calcula-
tions. A summary and perspectives are given in section 4.

2. Methodology

The DFTB-VBCI method is an adaptation of the CDFT+CI
approach63-69 to the SCC-DFTB scheme with the aim of
treating charge resonance in ionized molecular clusters. In
this approach, the wave function of the system Ψ is
expressed in a basis {ΦI} of configurations. For each
configuration, the charge is localized on a given fragment
of the system. The intuitive decomposition of a molecular
cluster leads to identifying the Nfrag fragments as the
monomers, and the wave function becomes

where ΦI is the configuration where the charge is fully
carried by fragment I. Each charge localized configuration
ΦI is a single Slater determinant, built from the molecular

Ψ ) ∑
I

Nfrag

bIΦ
I (1)
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orbitals (MO) {φi
I} resulting from a constrained SCC-DFTB

calculation. These VB like configurations then interact within
a small CI-like scheme, giving their coefficients bI in the
wave function and the ground state energy.

In this methodological part, we first briefly recall the SCC-
DFTB scheme basics (section 2.1) before explaining the
derivation of the charge localized configurations ΦI using
the constrained SCC-DFTB (section 2.2) and the CI-like
scheme calculation (section 2.3). We present then analytical
expressions for the nuclear gradients (section 2.4) and some
further approximations to accelerate the approach (section
2.5). We adopt different font conventions to distinguish
between matrices expressed in different basis sets. For
instance, a Hamiltonian matrix is written as H in the atomic
orbital (AO) basis set; H in the MO basis set, and H in the
determinant basis set (the basis of the charge-localized
configurations).

2.1. DFT and SCC-DFTB. Several reviews on the DFTB
and SCC-DFTB methods can be found in the literature.72-75

SCC-DFTB differs from Kohn-Sham DFT expressed on a
local basis set according to the following approximations:
(i) The DFT energy is expanded up to the second order with
respect to charge density fluctuations around a given refer-
ence density. (ii) All three center interaction integrals are
neglected as well as two center integrals involving atomic
orbitals belonging to the same atom. (iii) The MOs are
expressed in a minimal atomic basis set

(iv) The short distance repulsive potential is expressed as a
function of two body interactions. (v) The second-order term
in the DFT energy expansion is expressed as a function of
atomic Mulliken charges and a Γ matrix. With those
approximations, the total SCC-DFTB energy reads

where Ĥ0 is the Kohn-Sham operator at the reference density
and ER�

rep is the repulsive potential between atoms R and �.
The matrix elements of Ĥ0 expressed in the atomic basis set
as well as ΓR� and ER�

rep are interpolated from two body DFT
calculations. ni represents the atomic orbital occupation
numbers, and qR represents the atomic Mulliken charges. The
energy minimization is obtained by self-consistently solving
the secular equation

S is the atomic basis overlap matrix, and the Hamiltonian
matrix reads H ) H0 + H1 with

where µ ∈ R means that the atomic orbital µ belongs to atom
R.

Additional terms can be added to account for London
dispersion (Edisp) forces as a sum over atomic pairs.14,78,79

The deMonNano code80 was used as a starting point to
implement these developments.

2.2. Constrained SCC-DFTB. Similarly to the con-
strained DFT,63-65 the MOs {φi

I}, used to build the config-
uration ΦI, are obtained from a minimization of the SCC-
DFTB energy with the constraints that the charge is carried
by fragment I and that the orbitals are orthonormalized. The
corresponding Lagrangian is

where VI is the Lagrange multiplier ensuring the charge
localization constraint, P̂I is the projector of the density on
fragment I, NI is the number of electrons on fragment I,
which constrains the charge to be localized on this fragment,
and Λij represents the Lagrange multipliers ensuring the
orbitals’ orthonormality constraints. Wu and Van Voorhis65

discussed the effect of several localization schemes, based
on different charge definitions (Mulliken,81 Löwdin,82 and
Becke’s multicenter integration scheme83), on the constrained
energy, finally using the Löwdin approach. We used for the
constrained SCC-DFTB the Mulliken charge definition
because (i) the defects of Mulliken charges are less crucial
in SCC-DFTB than in DFT due to the use of a minimal
atomic basis set (no diffuse functions) and, (ii) in the most
used version, SCC-DFTB is a Mulliken charge-based ap-
proach, and all of the matrices have been parametrized for
this charge definition. This choice leads to the expression
for the constraint

with PI being the projection matrix expressed as65

The H matrix used in the secular equation (eq 4) becomes

Similarly to the constrained DFT, eq 4 must now be solved
self-consistently over the atomic charges and contains an
unknown Lagrange multiplier VI. To overcome some con-
vergence problems, we have implemented three ways of
solving this equation that can be used alternatively until one
of them converges:

(i) The first one (similar to that of ref 63) consists of
solving the secular equation with an inner loop and an outer
loop. In the inner loop, the Hamiltonian is calculated with a
fixed set of atomic charges, and the Lagrange multiplier VI

is modified so that the MOs diagonalizing the Hamiltonian
satisfy the charge localization constraint. The outer loop is
the self-consistent loop over the atomic charges.

φi ) ∑
µ

ciµ�µ (2)

ESCC-DFTB ) ∑
R,�*R

atoms

ER�
rep + ∑

i

ni〈φi|Ĥ
0|φi〉 +

1
2 ∑

R,�

atoms

ΓR�qRq�

(3)

∑
ν

ciν(Hµν - εiSµν) ) 0 ∀µ, i (4)

Hµ∈R;ν∈�
1 ) 1

2
Sµν ∑

�

atoms

(ΓR� + Γ��)q� (5)

L ) ESCC-DFTB({φi
I}) + ∑

ij

Λij
I (〈φi

I|φj
I〉 - δij) +

VI( ∑
i

ni〈φi
I|P̂I|φi

I〉 - NI) (6)

∑
iνµ

niciν
I ciµ

I Pνµ
I ) NI (7)

Pµν
I ) {0 if µ ∉ I and ν ∉ I

Sµν if both µ ∈ I and ν ∈ I
1
2

Sµν for other cases (µ ∈ I or ν ∈ I)

H ) H0 + H1 + VIPI
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(ii) The second approach consists of inverting the two
previous loops; i.e., the inner loop ensures the self-
consistence over the Mulliken charges, and the external loop
allows the determination of the Lagrange multiplier VI.

(iii) The third approach is somewhat different and consists
of three steps. First, a MOs guess is generated for the isolated
fragments. The full set of MOs is orthonormalized with a
Löwdin procedure. These MOs do not correspond to an
energy minimum and do not satisfy the charge localization
constraint. In the second step, the MOs evolve to change
charge on fragment I with the iterative procedure:

where n is the iteration step. The last term ensures the
orthonormalization constraint. Transposing this equation in
the atomic basis set gives the evolution of the MOs:

where X ) RS-1Λ. At each step, the R coefficient is adapted
to increase or decrease the charge on fragment I, and the X
matrix is calculated solving a second-order equation equiva-
lent to the Rickaert algorithm84 already implemented for
SCC-DFTB Car-Parrinello molecular dynamics.85 Once a
solution satisfying the density constraint is achieved, the last
step consists of relaxing the MOs to minimize the energy,
under conservation of the charge localization and orthonor-
mality constraints

giving the evolution of the coefficients

This step requires both the calculation of X and VI. Starting
from a given VI (the one in the previous step if n > 1), CI(n
+ 1) is determined, calculating X with the Rickaert algorithm.
The charge carried by fragment I with these new coefficients
is calculated. If this charge is too large (respectively too
small), VI is decreased (respectively increased). The process
is repeated until the charge constraint is satisfied. Finally,
the MOs converge to the charge-localized solution.

2.3. The Configuration Interaction-Like Scheme. The
set of MOs {φi

I}, obtained from a constrained SCC-DFTB
calculation, is used to build the charge-localized configura-
tions ΦI as single Slater determinants. The coefficients bI of
these configurations in the total wave function Ψ (see eq 1)
are obtained by solving the CI-like scheme:

where SIJ is the two-configuration overlap 〈ΦI|ΦJ〉 and HII

is the energy of the configuration ΦI already calculated with
the constrained SCC-DFTB. Following the approach of Wu
et al.,66,67 the coupling elements HIJ are calculated by

In the case of degenerate systems, one can also include more
than one configuration to represent the charge localization
on a given fragment, as will be shown in the applications of
section 3. Solving eq 12 provides both the ground state of
the system and some excited states generated via charge
resonance. Although these excited states are also of interest,
for instance, in spectroscopy, we focus in this work only on
the ground state which corresponds to the lowest eigenvalue
Eg.

2.4. Analytical Gradients. Derivatives of the energy with
respect to atomic nuclear coordinates are required to perform
molecular dynamics or geometry optimization. Their nu-
merical calculation is possible by finite differences, but the
number of energy calculations (2 × 3Natoms) turns out to be
quite large, even for small systems. Thus, an analytical
expression is of primary interest. In SCC-DFTB, it is
convenient to use the derivatives of the matrix elements (H0,
S, Γ) which are known and tabulated. Differentiating the
constrained SCC-DFTB energy with respect to the nuclear
coordinate Rba of atom a leads to the force expression

We now present the calculation of derivatives for the di-
agonal and off-diagonal elements separately. The differentia-
tion operator ∇ba is replaced by the symbol ∂a to simplify
the expressions.

2.4.1. DeriVatiVe of the Diagonal Element. The diagonal
element HII is the energy of the configuration ΦI. Dif-
ferentiating the DFTB energy (eq 3 with the dispersion
correction terms) and using the eigenvalue equation (eq 4),
the molecular charge conservation (eq 7) and orthonormality
constraints lead to the analytical expression (see also Wu
and Van Voorhis64):

2.4.2. DeriVatiVe of the off-Diagonal Elements. The dif-
ferentiation of the off-diagonal elements is obtained by
differentiating eq 13, namely

with

φi
I(n + 1) ) φi

I(n) + R(pI
φi

I(n) + ∑
j

φj
I(n)Λij) ∀i (8)

CI(n + 1) ) CI(n) + R(S-1PICI(n) + XCI(n)) (9)

φi
I(n + 1) ) φi

I(n) + R( dE

dφi
I/
+ ∑

j

φj
IΛij + VIPI

φi
I)

(10)

CI(n + 1) ) CI(n) + R(S-1HCI(n) + XCI(n) +
VIS-1PICI(n)) (11)

(H11 H12 .. H1n

H21 H22 .. H2n

: : :: :
Hn1 . .. Hnn

)(b1

b2

:
bn

) ) E( S1 S12 .. S1n

S21 S2 .. S2n

: : :: :
Sn1 . .. Snn

)(b1

b2

:
bn

)
(12)

HIJ )
1
2

(HII + HJJ + NIVI + NJVJ)SIJ -

1
2

(VI〈ΦI|P̂I|ΦJ〉 + VJ〈ΦI|P̂J|ΦJ〉) (13)

∇baEg ) ∑
IJ

bIbJ(∇
b

aHIJ - Eg∇
b

aSIJ) (14)

∂aHII ) ∂aE
rep + ∑

i

ni ∑
µν

ciνciµ(∂aHµν
0 + VI

∂aPµν
I +

(Hµν
1

Sµν
- εi)∂aSµν) + qa ∑

b

∂aΓabqb + ∂aE
disp (15)

∂aHIJ;I*J )
1
2

AIJ +
1
2

AJI
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We must now express the derivatives of the Lagrange
multiplier ∂aVI and those of the overlaps (real overlap and
through the projectors) between ΦI and ΦJ. As there is no
relationship between the MOs of the two configurations, there
is no Hellman-Feynman type simplification for the deriva-
tives of their overlaps. The analytical derivatives of the orbital
coefficients and of the Lagrange multipliers must be explicitly
calculated. The derivatives of the coefficients have already
been expressed for DFT (see, for instance, ref 86) by solving
the coupled perturbed equations. The expression only differs
here through the term containing the constraint.

For a given configuration ΦI, the derivative of the
coefficients of the orbitals {φi

I} can be related to the orbitals
themselves through a u matrix

The conservation of normalized MOs already imposes the
form of the diagonal term of the u matrix

For the off-diagonal elements uij; i*j, differentiating eq 4
leads to

where ∂aS and ∂aH are the derivatives of the SCC-DFTB
overlap and Hamiltonian matrices expressed in the molecular
orbital basis set

In the constrained SCC-DFTB, the Hamiltonian matrix
derivatives depend (i) on the derivatives of the matrices H0,
S, Γ, and P; (ii) on the derivatives of the coefficients; and
(iii) on the derivatives of the Lagrange multipliers. These
three contributions are now explicitly separated:

where ∂aFij contains the first contribution

with

The second term in eq 21 accounts for the Hamiltonian
dependences on the orbital coefficients with

and

where µ ∈ R; ν ∈ �; ω ∈ γ. In the last term of eq 21, Pij

accounts for the Hamiltonian differentiation upon the Lagrange
multiplier

Compacting the ij indices in a single m index and the kl
indices in a single n index, we now define

and rewrite eq 19

We now determine ∂aVI using the fact that NI remains
constant. Differentiating eq 7 leads to

which can be expressed with the u matrix:

Using the previous expression for u leads to the following
expression for the derivatives of the Lagrange multiplier:

AIJ ) (∂aHII + NI
∂aV

I)SIJ + (HII + NIVI)∂aSIJ

- 〈ΦI|PI|ΦJ〉∂aV
I - VI

∂a(〈Φ
I|PI|ΦJ〉)

(16)

∂aciµ
I ) ∑

k

ckµ
I uki (17)

uii ) -1
2 ∑

µν
ciµ

I ciν
I
∂aSµν (18)

uij )
∂aHij - εj∂aSij

εj - εi
(19)

∂aSij ) ∑
µν

ciµ
I cjν

I
∂aSµν

∂aHij ) ∑
µν

ciµ
I cjν

I
∂aHµν

(20)

∂aHij ) ∂aFij + ∑
kl

Aij,klulk + ∂aV
IPij (21)

∂aFij ) ∑
µν

ciµ
I cjν

I
∂aFµν (22)

∂aFµ∈R,ν∈� ) ∂aHµν
0 + VI

∂aPµν + ∂aSµν

Hµν
1

Sµν
+

1
2

Sµν ∑
�

((∂aΓR� + ∂aΓ��)q� +

∑
i

ni ∑
l

∑
ω∈�

(ΓR� + Γ��)ciωcil∂aSωl)

Aij,kl ) ∑
µν

ciµ
I cjν

I ∑
ω

∂Hµν

∂ckω
I

clω
I (23)

∂Hµν

∂ckω
I

) 1
2

nkSµν ∑
�

∑
λ∈�

Sλω(ΓRγ + Γ�γ + ΓR� + Γ��)ckλ
I

(24)

Pij ) ∑
µν

ciµ
I cjν

I Pµν (25)

um ) uij

Vm )
∂aFij - εj∂aSij

εj - εi

Bmn )
Aij,kl

εj - εi

wm )
Pij

εj - εi

u ) Bu + V + ∂aV
Iw

) (1 - B)-1V + ∂aV
I(1 - B)-1w

) u0 + ∂aV
Iu'

with u0 ) (1 - B)-1V and u′ ) (1 - B)-1w

(26)

∂aN
I ) ∑

i

ni ∑
µν

(ciµciν∂aPµν + 2∂aciµciνPµν) ) 0 (27)

∂aN
I ) ∑

i
∑
µν

niciµciν∂aPµν + 2 ∑
ij

niujiPij ) 0 (28)
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∂aH can now be calculated from eq 21, as well as the u
matrix from eq 19, and finally the derivatives of the
coefficients from eq 17. The SIJ derivatives are computed
from the MO coefficient derivatives and the derivatives of
the AO overlap matrix. For sake of efficiency, the determi-
nant expansions appearing in the calculation of the deriva-
tives were calculated using the Sherman-Morrison for-
mula.87 A similar approach is applied to the derivatives of
the projected overlap matrix 〈ΦI|PI|ΦJ〉.

Let us mention that, as a check, the analytical gradients
have been compared to gradients obtained from finite
difference calculations for a set of random geometries. The
mean absolute value of forces was 1.4 × 10-2 au with a
root-mean-square of 1.8 × 10-2 au, and the mean absolute
error was 2.1 × 10-5 au with a root-mean-square of 2.5 ×
10-5 au.

2.5. Variant of the DFTB-VBCI: The HOMO
Approximation. We will consider the following approxima-
tion to the DFTB-VBCI approach: we assume that, in a
molecular cluster, the MOs of the different charge localized
configurations mostly differ through their Highest Occupied
Molecular Orbital (HOMO). The overlaps and projected
overlaps between two configurations can then be simplified
as

The off-diagonal CI matrix element becomes

The advantage of this approach is the ability to avoid any
Slater determinant overlap calculation, and only the deriva-
tives of the HOMO coefficients need to be calculated.

3. Applications

We will now apply the DFTB-VBCI method to two prototype
cationic molecular clusters, namely, the benzene dimer and
the water dimer. All calculations have been performed on a
desktop computer (an Intel Xeon 2.8 GHz monoprocessor).
Compared with DFTB, the DFTB+VBCI method is more
time-consuming. For instance, a single point calculation
(without gradients computation) for a water dimer performed
over 6 × 10-3 s at the DFTB level takes 0.1 s with the
DFTB+VBCI. The single point calculation for the benzene
dimer increases from 0.07 s at the DFTB level to 1.67 s at
the DFTB+VBCI level. In an optimization procedure, the
calculation of the gradient has a small effect on the water
dimer (0.14 s per step) but a large effect on the benzene
dimer (17 s. per step). Although the computational time is

larger than for a simple DFTB calculation, which is the price
to pay for treating the charge resonance effects correctly with
this method, it remains much lower than high level ab initio
methods, a typical optimization of about 100 steps for a
benzene dimer taking half an hour.

3.1. The Cationic Benzene Dimer. Several authors have
investigated cationic benzene dimer clusters at high levels
of theory, addressing the relative stability of characteristic
isomers, namely, the sandwiches (stacked, parallel x- and
y-displaced) and T-shaped configurations (see Figure 1 and
Table 1). Let us cite for instance the work of Miyoshi et
al.88,89 which used a Complete Active Space Self-Consistent
Field (CASSCF) followed by a Multi-Reference Coupled Pair
Approximation (MRCPA) with a (73/7) basis set decon-
tracted to (721/52) for C and Dunning’s DZ set (31) for H.
The sandwich parallel displaced isomers were found to be
the most stable structures, with binding energies around 12.3
kcal mol-1, more stable than the T-shaped ones by 6.4 kcal
mol-1. A similar study was performed by Pieniazeck et
al.90,91 with the Equation-Of-Motion Coupled-Cluster model
with Single and Double substitutions for ionized systems
(EOM-IP-CCSD/6-31+G*). This calculation yields the same
isomer ordering as CASSCF-MRCPA and a similar energy
difference between parallel displaced and T-shaped struc-
tures. The absolute binding energies are however much
higher than for CASSCF-MRCPA (19.58 versus 12.3 kcal
mol-1 for the x-displaced sandwich). In the following, the
EOM-IP-CCSD results will be used as references to bench-
mark our model because (i) the structures have been fully
optimized, whereas the CASSCF-MRCPA ones have only
been optimized at the CASSCF level, and (ii) the binding
energies are in good agreement with the experimental studies,
providing values in the 15-20 kcal/mol range.92-98

The D6h symmetric stacking is another structure of interest,
which is slightly less stable (about 1-2 kcal mol-1) than
the two sandwich displaced isomers. We notice that DFT
calculations97,99,100 performed with the B3LYP functional
give reasonable binding energies for the sandwich structure
(17-19 kcal mol-1) but underestimate the energy difference
between the two structures.
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Figure 1. Benzene dimer cations optimized at the DFTB-
VBCI level. (a) T-shaped, (b) T_Csob, (c) sandwich stacked,
(d) x-displaced, and (e) y-displaced isomers.

Modeling Charge Resonance J. Chem. Theory Comput., Vol. 7, No. 1, 2011 49



Following Pieniazek et al.,90 we call πg
a and πg

o the
degenerate MOs in the neutral benzene molecule. In the
ionized monomer, these two levels are degenerate at the neu-
tral geometry but undergo Jahn-Teller distortion, leading
to an acute angle configuration (ionization from the πg

a

orbital) or an obtuse angle configuration (ionization from
the πg

o orbital). We follow the electronic description of the
Dimer Molecular Orbitals Linear Combination from the
Fragment Molecular Orbitals (DMO-LCFMO90), to describe
a benzene dimer, labeling the two fragments A and B. In
this framework, the constrained state A+B can be obtained
from removing one electron from either the πg

a or the πg
o

orbitals of A. Consequently, we need two configurations to
describe the constrained form A+B. In the case of the
symmetric D6h sandwich stacked dimer, these two A+B
configurations are degenerate and are built as follows: we
use the constrained SCC-DFTB to minimize the electronic
energy with an occupation of 1.5 for the two highest occupied
MOs (HOMO and HOMO-1) orbitals and 2 for the
energetically lower lying orbitals. The two A+B configura-
tions are then built from the obtained MOs as shown in
Figure 2. The same procedure is applied to obtain two AB+

configurations, and the CI matrix, which has to be diago-
nalized, is a 4 × 4 matrix.

In the other isomers (displaced sandwiches and T-shaped),
the πg

a and πg
o orbitals of each fragment are no longer

degenerate, and one could in principle calculate the energy
of these configurations without using fractional occupation
numbers. However, we could not obtain a self-consistent
solution of the A+B state (respectively AB+) with the
constrained SCC-DFTB since the πg

a and πg
o orbitals on

fragment A (respectively on B), although not degenerate,
remain close in energy. We therefore decided to keep the
procedure used for the D6h stacked sandwich isomer, filling
the HOMO and HOMO-1 orbitals with 1.5 electrons.
Although the filling of the MOs is fixed, these MOs relax
anyway and are no longer degenerate in the final results due
to the coupling with geometry relaxation. This fractional
occupation of the HOMOs would also be usefull to describe
the dissociation, keeping the same occupation of the orbitals
(see ref 101). Finally, we mention that we use in the empirical
dispersion term the parameters of Rapacioli et al.79 already
benchmarked for PAH clusters.

3.1.1. The Stacked Sandwich Isomer. We first discuss the
results obtained for the stacked sandwich in the D6h geometry.
Figure 3 represents the energy of the dimer corresponding
to the dissociation along the z axis, orthogonal to the planes
of the monomers. For this example, the fragments are frozen
at the monomer neutral geometry. The zero energy reference
corresponds to the sum of the separated fragments calculated
independently, namely, E(C6H6

+) + E(C6H6). The SCC-
DFTB dissociation curve is reminiscent of the wrong
dissociation curve of radical molecules like H2

+ calculated
with DFT (see for instance refs 35 and 36) and can be
explained as follows. First, the SCC-DFTB energy does not
converge to the sum of the energies of the fragments at the
dissociation limit. At infinite distance, the charge is equally
distributed over the two fragments. As the evolution of the
self-interaction error with the number of electrons
on a fragment is unfortunately not constant or linear,
we have 2 × ESCC-DFTB(C6H6

0.5) * ESCC-DFTB(C6H6
+) +

ESCC-DFTB(C6H6). At shorter distances, the energy in-
creases, and a barrier is even observed before reaching
the minimum, which is here a metastable minimum. The
responsible repulsive contribution has a 1/R behavior and
can be attributed to the artificial repulsion of two half-
charged fragments, which is a different kind of self-
interaction than the on site one. Finally, the minimum is
much too low in energy as compared to the reference
calculations (see Table 1). This overstabilization of
delocalized states is a well-known effect of the self-
interaction error.102,103

As can be seen from Figure 3, the DFTB-VBCI method
does not present the wrong behavior pattern of the SCC-
DFTB curve. At the dissociation limit, the energy converges
to the sum of the energies of the fragments. In eq 12, the
overlaps and coupling terms vanish, and the energies of the
localized configurations are degenerate. These energies are

Table 1. Binding Energies (kcal/mol) of the Cationic Benzene Dimer Obtained at Different Levels of Theorya

DFTB-VBCI HOMO Approx. SCC-DFTB EOM-IP-CCSD DFT CASSCF + MRCPA

stacked sandwich 17.70 17.91 29.53 18.34b 18.2d-19.1e

x displaced 20.90 20.43 29.01 19.58c 12.3g

y displaced 21.26 20.79 29.21 19.81c 16.57f 10.9g

T-shaped 9.23 16.90 24.68 12.41c 15.7d

T_Csob 9.19 unstable unstable

a The stacked sandwich structure correspond to constrained D6h optimization whereas the other isomers are fully optimized with the
respective methods. b Pieniazek et al.90 c Pieniazek et al.91 d Ibrahim et al.97 e Itagaki et al.99 f Kryachko.100 g Miyoshi et al.89

Figure 2. Two electronic configurations (right) obtained from
constrained SCC-DFTB calculation with noninteger occupation
numbers (left).

Figure 3. Dissociation potential energy curves of the cationic
benzene dimer in the stacked sandwich configuration calcu-
lated with SCC-DFTB and DFTB-VBCI approaches.
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calculated with the electronic density corresponding to one
charged and one neutral monomer and not that of two half-
charged fragments. The Coulombic self-interaction 1/R
repulsion also disappears with this approach, as well as the
corresponding barrier. Finally, the binding energy for the
stacked sandwich (17.70 kcal/mol) is significantly smaller
than the SCC-DFTB one (29.53 kcal/mol) and yields a much
better agreement with that of the EOM-IP-CCSD calculation
at 18.34 kcal/mol. The interplane distance is 2.84 Å, which
is smaller than the 3.3 Å reported at the EOM-IP-CCSD(T)
level.90

The dissociation curve obtained by applying the HOMO
approximation detailed in section 2.5 is also plotted in Figure
3. It is almost identical to the DFTB-VBCI curve with a
binding energy of 17.91 kcal/mol vs 17.70 kcal/mol for the
DFTB-VBCI.

3.1.2. The T-Shaped and Displaced Sandwich Isomers.
The T-shaped and displaced sandwiches have been optimized
without any geometrical constraint. The binding energies are
reported in Table 1. The T-shaped isomer has a binding
energy of 9.23 kcal/mol, which is slightly smaller than the
EOM-IP-CCSD one. Another difference concerns the charge
localization. With EOM-IP-CCSD, the charge is mostly
localized on the stem fragment (88%), whereas its localiza-
tion drops to 56% with the DFTB-VBCI. A possible
explanation for this charge localization discrepancy could
be related to some lack of stabilization by polarization. In
DFTB-VBCI, the benzene π system can be polarized in the
direction parallel to the benzene ring. However, due to the
reduced basis set used, the polarization of the π system
perpendicular to the benzene ring is underestimated. This
lack of polarization could be at the origin of the destabiliza-
tion of the configuration where the charge is carried by the
stem fragment, leading to an oversharing of the charge and
an underestimation of the binding energy. Another explana-
tion could rely on the choice of the charge analysis method,
which is a NBO analysis for the ab initio calculation and
Mulliken analysis in the DFTB-VBCI. These two charge
definitions are known to produce sometimes different charge
distributions even for similar electronic densities. The
distance between the centers of the two molecules is 4.52
Å, in good agreement with the EOM-IP-CCSD one (4.59
Å).

In the neutral benzene dimer, the most stable structures
have often been reported to be “tilted” T-shaped (also called
Cs over atom/bond) configurations.10,79,104,105 In the cation,
the corresponding structures have been reported to be
transition states100 (DFT-B3LYP level). Optimizing the Csob
structure at the DFTB-VBCI level leads to a minimum
(metastable, 11.7 kcal/mol above the global minimum). The
energy difference with the T-shaped structure is smaller than
0.05 kcal/mol, certainly below the accuracy of the method.

At the SCC-DFTB level, the x- and y-displaced dimers
are overstabilized as compared to reference calculations.
Similarly to what is observed for the stacked sandwich dimer,
the DFTB-VBCI approach gives considerably improved
binding energies (20.90 and 21.26 kcal/mol) in very good
agreement with those of EOM-IP-CCSD (19.58 and 19.81
kcal/mol). As already found for the D6h benzene case, the

interplanar distance is shorter (2.71 and 2.78 Å) compared
to EOM-IP-CCSD(T) results (3.08 and 3.18 Å). The sideward
shiftings are 1.00 and 1.12 Å, compared to 1.07 (x-displaced)
and 0.72 (y-displaced) Å at the EOM-IP-CCSD(T) level91

(these shifts are 1.0 Å for both isomers when freezing
Jahn-Teller relaxation90).

The two structures are almost degenerate, with a slightly
more stable y-displaced dimer. The energy difference is
however probably much smaller than the expected accuracy
of our approach. These are clearly cases in which quantum
vibrational effects should be considered.

The global trend when relaxing the geometries compared
to neutral dimers is to reduce intermolecular distances. For
instance, the interplanar distances in displaced sandwich
structures are 2.71/2.78 Å, smaller than those obtained for
the neutral dimer (3.39 Å) at the DFTB level.79 The sideward
shifting is also reduced 1.0/1.13 Å versus 1.36 Å in the
neutral dimer. The same trend is observed for the T-shaped
isomer in which the distance between the molecular centers
is reduced from 4.82 to 4.52 Å in the cationic dimer.

Applying the HOMO approximation to the DFTB-VBCI
leads to very similar results. The most stable structures are
the x- and y-parallel displaced ones with binding energies
differing by less than 2.5% from those of DFTB-VBCI. The
T-shaped structure is found to be less stable than the previous
isomers, but its binding energy is overestimated as compared
to reference calculations and DFTB-VBCI. This suggests that
the differences between the charge localized configurations
cannot be reduced to a change in the HOMO. We also notice
that with this approximation the Csob does not correspond
anymore to a minimum, the optimization leading to the
T-shaped structure.

3.2. The Cationic Water Dimer. The potential energy
surface of cationic water dimers has been investigated using
high-level of theories106-111 (see Table 2). The stable
structures belong to two families (Figure 4). In the first
one, the two water monomers are superimposed in an
antisymmetric pattern, and the charge is equally distributed
over the two units. The second one results from a proton
transfer leading to two nonsymmetric units [H3O-OH]+,
in which the charge is mostly localized on the H3O
fragment. The structures found to be minima in ref 110

Table 2. Binding Energies (kcal/mol) of Cationic Water
Dimer Obtained at Different Levels of Theory

[H2O-H2O]+ [H3O-OH]+ (Cs) [H3O-OH]+ (C1)

DFTB-VBCI 35.44 42.31
HOMO Approx. 35.74 42.33
SCC-DFTB 68.33 47.12
GGC 53.73a 48.66a

BLYP 58.4b 49.3b

B3LYP 51.5b 49.8b

MPW1K 42.9b 49.9b

BH&HLYP 41.4b 49.9b

MP2 40.48b/43.5c 50.9c 46.47b

MP4 41.1c 49.9c

CCSD(T) 39.53b/39.59d 46.64d 46.70b/46.68d

MCPF 36.1e 45.9e 45.93e

a Barnett and Landman.112 b Lee and Kim.111 c Gill and
Radom.106 d Cheng et al.110 e Sodupe et al.107 MCPF ) SCF +
electron correlation included with size extensive Modified-
Coupled-Pair Functional.
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have been taken as starts for optimization using the DFTB-
VBCI method.

3.2.1. The [H3O-OH]+ Isomer. Table 2 compares the
binding energies obtained at the SCC-DFTB level to those
resulting from other calculations. For the [H3O-OH]+

isomer, most of the DFT functionals (except for the BH&H)
give reasonable results as compared to CCSD(T) values.
Similarly, the binding energy obtained at the SCC-DFTB
level, without CI correction, is close to that of CCSD(T)
(47.12 versus 44.6-46.7 kcal mol-1).

In this system, DFTB-VBCI considers the interaction
between the configurations where the positive charge is
localized either on the H3O or on the OH fragments. At the
dissociation limit, the constrained form (H3O+-OH) is
obtained by fixing occupation numbers of 1.5 for the two
degenerate HOMOs on the neutral OH fragment (in order
to maintain the degeneracy of the OH πx and πy orbitals),
the other occupied orbitals being doubly occupied. The
second constrained form (H3O-OH+) is obtained with
occupation numbers of 0.5 for the two degenerate HOMOs
of the neutral H3O fragment and 0.5 the two degenerate
HOMOs on the ionized OH fragment, the other orbitals being
doubly occupied. In the complex, the degeneracies are lifted
but, similarly to the benzene dimer, we decided to keep these
fixed occupation numbers in order to prevent some conver-
gency problems and to have a continuous description of the
dissociation, which may be useful in future works.

The weights of the two configurations in the CI approach
indicate that the charge is mostly localized (99.9%) on the
H3O fragment. In CCSD(T) calculations, the charge is also
strongly localized on this fragment but only by 88% from a
restricted open-shell Hartree-Fock level with natural popu-
lation analysis.110

The DFTB-VBCI minimum (Cs-trans) is different from
the C1 minimum obtained with CCSD(T). However, in
CCSD(T), the Cs-trans isomer corresponds to a transition
state 0.04 kcal/mol higher in energy than the global C1

minimum110 (0.1 kcal mol-1 for the EOM-IP-CCSD108 and
0.03 kcal/mol at the SCF+MCPF level107). Such a small
energy difference is far beyond the expected accuracy of the
DFTB-VBCI method. The binding energy of the Cs-trans
isomer is close (42.31 kcal/mol) to that obtained with a
simple SCC-DFTB calculation (47.12 kcal/mol). This is due
to the fact that the charge is not significantly delocalized
between the two fragments and that the SCC-DFTB calcula-
tion already attributes most of the charge to the H3O
fragment. The artificial stabilization by the self-interaction
error is therefore less crucial. This also explains why most

of the DFT functionals give reasonable results for this
structure. Concerning the geometry, the distance between the
two oxygen atoms is 2.66 Å, close to the value of 2.5 Å
usually found.107,108,110,111 The hydrogen bonding is over-
estimated with 1.74 Å compared to values between 1.44 and
1.47 Å at a high level of calculations.107,108,110,111

3.2.2. The [H2O-H2O]+ Isomer. It can be seen from
Table 2 that, at the CCSD(T) level, the [H2O-H2O]+ isomer
is less stable by 7 kcal/mol than the [H3O-OH]+ isomer.
At the DFT level, the binding energy strongly depends on
the choice of the functional. For instance, the [H3O-OH]+

structure is more stable than [H2O-H2O]+ with MPW1K,
BH&H, and BH&LYP functionals, but it is the opposite with
the BLYP, BPW91, HCTH407, and B3LYP function-
als. At the SCC-DFTB level, the binding energy of the
[H2O-H2O]+ isomer is strongly overestimated (68 versus
39 kcal mol-1 for CCSD(T)), making this isomer 23 kcal/
mol more stable than the [H3O-OH]+ isomer. The DFTB-
VBCI leads to a significant improvement, reducing the
binding energy to 35.44 kcal/mol, a value close to CCSD(T)
results (39 kcal/mol). In this isomer, the charge is equally
distributed between the two equivalent fragments. The
overstabilization observed at the SCC-DFTB level is at-
tributed to the self-interaction error due to the strong
delocalization and is corrected by the DFTB-VBCI approach.
This is in line with the fact that self-interaction corrected
functionals successfully predict this structure to be less stable
by about 8 kcal mol-1 than the proton transferred isomer.108

The distance between the two oxygens is 2.05 Å, in
agreement with values between 2.02 and 2.05 Å at higher
levels of calculation.107,108,110,111 We notice that our geom-
etry corresponds to a C2h symmetry, whereas this optimized
configuration is often reported in a C2 geometry (see refs
108, 110, and 111). However, Cheng et al.110 found that C2

and C2h structures degenerate at the CCSD(T) level.
Finally, we notice (Table 2) that for both the [H3O-OH]+

and [H2O-H2O]+ isomers, the binding energies obtained
with the HOMO approximation are very close to that
obtained with the full DFTB-VBCI method.

4. Conclusion

An extended method combining a VBCI-like scheme with
SCC-DFTB has been developed. The method has been
implemented together with its analytical gradients to enable
complete optimization, including the intra- and intermolecular
degrees of freedom.

We have benchmarked the DFTB-VBCI approach on the
ionized dimers of benzene and water. It is shown for the
benzene dimer cation that the self-interaction error is at
the origin of the unphysical behavior of the SCC-DFTB
dissociation energy curve. It is fully corrected with DFTB-
VBCI, as detailed for the stacked sandwich. The binding
energies obtained for different isomers with the DFTB-VBCI
method agree well with those of high-level calculations as
well as experimental data, while these energies are strongly
overestimated with SCC-DFTB. We however notice that the
main error for the DFTB-VBCI binding energy concerns the
T-shaped structure, which is understabilized by 3 kcal/mol.
This may be due to the use of point charges and a possible

Figure 4. Water dimer cations optimized at the DFTB-VBCI
level. (a) [H3O-OH]+ isomer and (b) [H2O-H2O]+ isomer.
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mistreatment of the multipolar nature of the benzene π
system interacting with that of the charged stem benzene.
Further improvement of the DFTB-VBCI could include such
a multipolar description of the π system as used, for instance,
in accurate force field calculations113 in order to account for
this effect but at the price of a larger computational effort
to derive the energy gradient.

The second benchmark system is the ionized water dimer.
The two lowest energy isomers strongly differ by a proton
transfer. The binding energy of the [H3O-OH]+ isomer
calculated at the DFT level with several functionals is in
good agreement with reference calculations. This is also the
case with SCC-DFTB and DFTB-VBCI due the localization
of the charge on the H3O fragment, reducing the multicon-
figurational nature of the wave function and the self-
interaction error in standard DFT-based calculations. On the
contrary, in the [H2O-H2O]+ isomer, the charge is equally
carried by the two fragments, and the binding energies
obtained at the DFT level strongly differ depending on the
choice of the functional. With SCC-DFTB, this structure is
overstabilized and becomes artificially the most stable one. This
effect is corrected with the DFTB-VBCI approach, which gives
a binding energy close to that of high-level calculations.

For the two benchmark systems, the binding energies are
in quantitative agreement with those of higher levels of
calculation. Concerning the geometries, some differences
have been observed with those of high level calculations,
the most critical one being the interplane distance in benzene
sandwich structures. This could be due to the reduced basis
used in DFTB leading to an underestimation of overlaps and
consequently charge resonance stabilization at large dis-
tances. Neglecting the three body integrals in the DFTB could
also play a role, which is difficult to estimate.

In this work, we have been concerned with the analytical
derivation of the gradients, and optimizing the efficiency of
the code will be a further step. One of the key computational
difficulties is the double SCF involving both the charge and
constraint. Efficiency could certainly be strongly improved
by using extrapolation schemes of the Lagrangian parameter
and atomic charges (Broyden114 or Pulay115 schemes) also
transferring the SCF densities from one geometry to the next
one. In the gradient computation, most of the time is spent
in the calculation of the inverse of the A matrix, which could
be calculated iteratively. Starting from the inverse of A
calculated at the previous step would reduce the number of
iterations. All of these improvements would of course not
affect the accuracy of the method.

Beyond molecular clusters, the direct applicability of the
method to the fragmentation of organometallic complexes
might be less straightforward. The present scheme requires
an a priori identification of the ligand metal partition, which
may not be unique; then one possibility could be to use small-
scale fragments, for instance, one per ligand. The present
scheme has been applied to cationic systems. Dealing with
the localization/delocalization process in anionic molecular
clusters could be considered with a simillar scheme. How-
ever, the treatment of the molecular negative units is not
very reliable since DFTB is expressed in a minimal valence
basis, while the description of molecular anions even with

DFT generally requires extended basis sets with diffuse
functions and even sometimes very diffuse functions for
describing dipole- and quadrupole-bound anions.

We now plan to perform global explorations of the
potential energy surfaces through molecular dynamics or
Monte Carlo sampling with the aim of studying ionized dimer
dissociation. When the advantage of SCC-DFTB in terms
of computational efficiency is taken, the DFTB-VBCI will
allow for dealing with systems much larger than dimers. In
our previous study, DFTB-VBCI has been used to character-
ize binding energies, ionization potentials, as well as charge
localization in stacked coronene clusters with frozen intramo-
lecular geometries and equal spacings between the units.77 This
preliminary work was however performed before the develop-
ment of the analytical nuclear gradients, and it will be of interest
to characterize the effects of intra- and intermolecular relaxation
in these clusters. As for the hole delocalization, one could expect
similar patterns as those of the rare gas clusters Hen

+, Nen
+, Arn

+,
Krn

+, and Xen
+, for which the hole tends to delocalize on a few

units (from 2 to 4, depending on the rare gas) and the other
atoms tend to organize in crowns around a linear core.116 We
plan to investigate how the monomer internal degrees of
freedom, the molecular extension, and the shape influence the
size of the core unit and the general organization in molecular
clusters with polyatomic monomers. Another perspective will
be to study charge dynamics in such clusters, which is possible
since the model also provides charge transfer excited states.
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