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Abstract

Using the dual Kantorovich formulation, we compute the strictly-correlated elec-

trons (SCE) functional (corresponding to the exact strong-interaction limit of density

functional theory) for the hydrogen molecule along the dissociation curve. We use an

exact relation between the Kantorovich potential and the optimal map to compute the

co-motion function, exploring corrections based on it. In particular, we analyze how

the SCE functional transforms in an exact way the electron-electron distance into a

one-body quantity, a feature that can be exploited to build new approximate function-

als. We also show that the dual Kantorovich formulation provides in a natural way the

constant in the Kohn-Sham potential recently introduced by Levy and Zahariev [Phys.

Rev. Lett. 113, 113002 (2014)].
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1 Introduction

A good accuracy-price ratio makes Kohn-Sham Density Functional Theory (KS DFT)1 the

most used method for electronic structure calculations in various fields from biochemistry

to material science. Unlike standard mean-field theories, KS DFT is, in principle, an exact

theory: if the exchange-correlation functional Exc[ρ] were known, KS DFT would yield the

exact ground state energy and density of any many-electron system. In practice, different

approximations for Exc[ρ] are often used to tackle different classes of systems, properties, or

processes, and, despite enormous successes, there are still problems that hamper KS DFT’s

overall predictive power. The lack of accuracy of KS DFT for certain systems is a reflection of

the fundamental issues that present approximations still encounter.2,3 In particular, the most

challenging problems are related to near-degeneracy and strong correlation effects, where

KS DFT easily gives even qualitatively wrong results. Crucial examples for chemistry are

stretched bonds and systems containing d and f elements. In such cases, broken symmetry

solutions often give better energies, but in complex systems they might be sensitive to the

functional chosen and they give a wrong characterization of several properties.4

Mainstream strategies to improve the approximations for the xc functional of KS theory

follow the idea of a “Jacob’s ladder”,3,5 based on an ansatz for the dependence of the xc

functional on the relevant “ingredients”, increasing the complexity of the approximations

in a hierarchical manner (local density, local density gradients, local KS kinetic energy, KS

occupied orbitals, up to the KS virtuals). A (sometimes very large) number of parameters can

be also introduced and fitted to specific data sets.6 We have to keep in mind that KS DFT is

based on a system of non-interacting fermions, treating the electron-electron interactions in

an approximate way. Current available approximations mainly work when the physics of the

true, interacting, system is not too different from the non-interacting one of Kohn and Sham:

for these cases the “Jacob’s ladder” strategy proved to be highly successful in capturing the

(relatively small) xc effects. Strongly-correlated systems, however, are radically different

from non-interacting ones. In these cases, the xc functional needs to be a drastic correction,
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and traditional strategies might not be the best path to follow.

A possible, rigorous, starting point to build this drastic correction is provided by the limit

of infinite coupling strength of the exact xc functional, called “strictly-correlated electrons”

(SCE) functional.7–9 The SCE functional has a highly non-local dependence on the density

that encodes new information with respect to the traditional ingredients of the “Jacob’s lad-

der” approach. Despite this high non-locality, the SCE functional derivative with respect to

the electronic density can be computed exactly via a powerful shortcut,10,11 yielding a one-

body multiplicative Kohn-Sham potential that is truly able to make non-interacting electrons

reproduce key features of strongly-correlated ones, without artificially breaking any symme-

try, as shown by self-consistent KS SCE results on model semiconductor quantum wires

and quantum dots.11,12 The SCE functional has been also extended to fractional electron

numbers,13 displaying a derivative discontinuity at integer electron numbers in low-density

systems even in a spin-restricted framework, a key property to describe the ground-state of

strongly-correlated systems,2 as well as important applications such as quantum transport,14

missed by the standard approximate xc functionals.2 Simple tests on one-dimensional model

chemical systems showed that the xc SCE functional is able to correctly stretch a bond in KS

theory without symmetry breaking, while largely overcorrelating at weak- and intermediate

correlation regimes. A very recent15 numerical study on the three-dimensional H2 molecule

also found results that are in qualitative agreement with the one-dimensional ones, confirm-

ing that the latter were good models for the chemistry in this case, as inferred in ref 16. The

challenge is then to retain the good performances of the SCE functional at strong correlation

while adding corrections for (or interpolating to) the weak and intermediate chemically rel-

evant correlation regimes. First corrections to KS SCE tested on one-dimensional models17

and to the anions of the He isoelectronic series18 have been found to improve substantially

at different correlation regimes, but are still not satisfactory.

Overall, the asymptotic exactness of the non-local physics of the xc SCE functional makes

it a very promising ingredient to overcome the present problems of KS DFT, even if the SCE
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non-locality is probably too extreme, and one will need to reduce it in some approximate

way: a first step in this sense has been undertaken in ref 19. The original formulation of the

SCE functional was based on the idea that, in the strong-interaction limit, the electrons are

infinitely (or perfectly) correlated. A change of the position of one electron in the system

affects the positions of all the others, a feature that is captured by mathematical objects,

known as co-motion functions f i(r), which are non-local functionals of the density.7,8 Along-

side this original formulation, more recently another SCE formulation appeared, based on

the mass transportation theory (or optimal transport) formalism,20–23 an important field of

mathematics and economics.24–26 The optimal transport formulation defines a dual prob-

lem that corresponds to a maximization under linear constraints, yielding in one shot the

functional and its functional derivative. First proof-of-principle calculations with this dual

formulation have been carried out by Mendl and Lin.22 To show that their algorithm works

for a general 3D geometry, they have applied it to a model density for a trimer with up

to six electrons, consisting of three different gaussians centered arbitrarily, thus obtaining

the SCE functional and potential bypassing the co-motion functions. However, the dual

formulation is expensive, as it involves a high-dimensional minimization. The formulation

with the co-motion functions is certainly more appealing (as it defines a sparse problem) and

more physically transparent. A promising route to use the physics of the xc SCE functional

to improve DFT approximations could be the construction of approximate co-motion func-

tions, i.e., to build functionals totally inspired to the SCE form, and to combine them with

suitable corrections, like the ones of refs 17,18. To be able to approximate the co-motion

functions in general 3D geometry, it is essential to gain insight into their exact form as much

as possible, as well as to understand if corrections based on them could really improve the

KS SCE results.

In this work we construct accurate co-motion functions for the 3D hydrogen molecule

along the dissociation curve, by means of a powerful result from mass transportation theory:

for the special case of N = 2 particles, it is possible from the dual formulation to obtain the
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co-motion function in closed form (according to the basis chosen for the potential). Thus, we

first implement the dual formulation using a physically-motivated parametrization for the

SCE potential (different from the one used by Mendl and Lin22), and we then extract the co-

motion function at different internuclear separations. We then compute the full dissociation

energy curve by using the bare xc SCE functional and by adding to it two corrections con-

structed using our accurate co-motion function. As already observed in the 1D calculations

and in ref 15, we find that the xc SCE functional is able to correctly dissociate the molecule

in the spin-restricted KS formalism, but, as expected, it gives total energies way too low

near the equilibrium distance. Notice that in ref 15 the co-motion function was obtained

numerically, using a smart grid. Here we use a basis set approach, which is crucial to con-

struct corrections based on the co-motion function itself. We find that using the co-motion

functions to build corrections largely improve the KS SCE results, providing dissociation

curves significantly better than the ones from standard functionals. The interesting point is

that the co-motion function transforms rigorously a two-body property (the electron-electron

distance) into a one-body quantity. We also show that the dual Kantorovich formulation

provides in a natural way the constant in the Kohn-Sham potential recently introduced by

Levy and Zahariev,27 and that this constant has a very well defined physical meaning in the

strong-interaction limit of the DFT adiabatic connection.

2 Kohn-Sham DFT with the SCE functional

The strictly-correlated electrons (SCE) functional can be briefly introduced starting from

the standard adiabatic connection in DFT, in which the electron-electron repulsion operator

V̂ee in the Hohenberg-Kohn functional is rescaled by a real parameter λ,28,29

Fλ[ρ] = min
Ψ→ρ
〈Ψ|T̂ + λV̂ee|Ψ〉, (1)
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where, as usual,30 the search is over all fermionic wavefunctions Ψ yielding the density ρ(r).

The adiabatic connection provides an exact formula for the Hartree-exchange-correlation

functional EHxc[ρ]:28,29

EHxc[ρ] =

∫ 1

0

〈Ψλ[ρ]|V̂ee|Ψλ[ρ]〉dλ ≡
∫ 1

0

V λ
ee[ρ]dλ, (2)

where Ψλ[ρ] is the minimizing wave function in eq 1. Although λ in this formula varies only

between 0 (the Kohn-Sham system) and 1 (the physical system), the situation in wihch λ > 1

can provide very useful information to build approximations. The SCE functional V SCE
ee [ρ]

corresponds to the the limit of infinite coupling strength, λ→∞, of the integrand in eq 2:

V SCE
ee [ρ] = lim

λ→∞
V λ
ee[ρ] = 〈Ψ∞[ρ]|V̂ee|Ψ∞[ρ]〉, (3)

and it is the natural counterpart of the KS non-interacting kinetic energy functional Ts[ρ] =

Fλ=0[ρ].

The SCE functional V SCE
ee [ρ] was first introduced by Seidl and co-workers,7,8,31 and it

corresponds to the minimal Coulomb repulsion among all the wave functions that are con-

sistent with ρ(r). The minimizing wave function Ψ∞[ρ] (which becomes a distribution in

this limit) describes the maximum possible correlation in the given density ρ(r): if one of

the electrons changes its position, the other electrons in the system would also change their

positions, in such a way that the new interparticle distances continue to minimize the total

Coulomb repulsion. If we label the position of one of the electrons in the N -electron sys-

tem as r, then r would fix the position of all the other N − 1 electrons via the so-called

co-motion functions fi(r), ri = fi(r).
8 The co-motion functions are non-local functionals of

the one-electron density ρ(r): the probability of finding the reference electron at position r

must be the same as the probability of finding electron i at fi(r), a condition given via the
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following differential equations8

ρ(fi(r))dfi(r) = ρ(r)dr. (4)

As electrons are indistinguishable, the reference electron at r could be any electron in the

system, so the co-motion functions need to satisfy the following cyclic group properties:8,9

f1(r) ≡ r,

f2(r) ≡ f(r),

f3(r) = f(f(r)),

f4(r) = f(f(f(r))),

...

f(f(. . . f(f(r))))︸ ︷︷ ︸
N times

= r.

(5)

In terms of the co-motion functions, the SCE functional V SCE
ee [ρ] can be expressed as:32

V SCE
ee [ρ] =

1

2

∫
drρ(r)

N∑
i=2

1

|r− fi(r)|
. (6)

Despite the high non-local character of the SCE functional, evident from eq 4, it is possible

to find its exact functional derivative (yielding a one-body multiplicative potential) via the

auxiliary equation10,11

∇vSCE(r) = −
N∑
i=2

r− fi(r)

|r− fi(r)|3
, (7)

which shows that the SCE potential vSCE(r) exactly represents the net Coulomb repulsion

acting on the electron at position r, when the many-electron system is described by Ψ∞[ρ].

The SCE functional can be used to partition the Hohenberg-Kohn functional F [ρ] =
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Fλ=1[ρ] of eq 1 as

F [ρ] = Ts[ρ] + V SCE
ee [ρ] + Tc[ρ] + V d

ee[ρ], (8)

where both the kinetic correlation energy, Tc[ρ] = 〈Ψλ=1[ρ]|T̂ |Ψλ=1[ρ]〉 − Ts[ρ] and the

electron-electron decorrelation energy33,34 V d
ee[ρ] = 〈Ψλ=1[ρ]|V̂ee|Ψλ=1[ρ]〉 − V SCE

ee [ρ] are posi-

tive.

If we neglect Tc[ρ] and V d
ee[ρ] we obtain the KS SCE approximation, which corresponds

to set

EHxc[ρ] ≈ V SCE
ee [ρ], (9)

and it is equivalent to approximate the minimum of the sum in the Hohenberg-Kohn func-

tional with the sum of the two minima

min
Ψ→ρ
〈Ψ|T̂ + V̂ee|Ψ〉 ≈ min

Ψ→ρ
〈Ψ|T̂ |Ψ〉+ min

Ψ→ρ
〈Ψ|V̂ee|Ψ〉, (10)

yielding a rigorous lower bound to the exact ground-state energy. Notice that in the low-

density limit the sum of the Hartree and the exact xc functional tends asymptotically to the

SCE functional.

3 The SCE functional and Mass Transportation The-

ory

The link between the SCE functional and mass transportation (or optimal transport) theory

was found, independently, by Buttazzo et al.20 and by Cotar et al.21 Mass transportation

theory dates back to 1781 when Monge24 posed the problem of finding the most economical

way of moving soil from one area to another. In 1942 Kantorovich25 generalized it to what
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is now known as the Kantorovich dual problem. In the last twenty years optimal transport

has developed into one of the most active fields in mathematics.26 The basic Monge problem

consists in asking what is the most economical way to move a mass distribution ρ1(r) into

another distribution ρ2(r), given the work c(r1, r2) (called cost) necessary to move a unit

mass from a position r1 to another position r2. The solution to the Monge problem is then

given in terms of an optimal map, which assigns to every point r of ρ1(r) a unique final

destination f(r) in ρ2(r). The co-motion functions turn out to be exactly the optimal maps

for a multimarginal Monge problem with cost function given by the Coulomb repulsion.20

However, it is very delicate to prove in general the existence of the set of optimal map

functions for systems with arbitrary dimension and density (a formal proof for the SCE

case is available, up to know, only for the one-dimensional case35 with any number N of

electrons, and for N = 2 in any dimension and geometry20). It is for that reason that

Kantorovich25 proposed a relaxed formulation of the Monge problem, in which the goal is to

find a transport plan that gives the probability that, at optimality, a given element r1 of ρ1 be

transported in r2 in ρ2. This relaxed problem, in turn, has a dual formulation, known as the

dual Kantorovich problem, which is closely related to the Legendre transform formulation of

standard DFT,36 and corresponds to a maximization with respect to potentials, under linear

constraints. The maximizing Kantorovich potential u(r) differs from the SCE potential of

eq 7 vSCE(r) – defined as the functional derivative of V SCE
ee [ρ] supplemented by the condition

vSCE(|r| → ∞)→ 0 – only by a constant C[ρ]:20

u(r) = vSCE(r) + C[ρ]. (11)

As we shall discuss more in detail in section 7, the constant C[ρ] appearing in the Kantorovich

potential is exactly the same (in the strong-correlation limit) recently introduced by Levy

and Zahariev.27

From the optimal-transport point of view the SCE functional defines a multimarginal
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problem, in which all the marginals are the same, so that the SCE mass-transportation

problem corresponds to a reorganization of the “mass pieces” within the same density. The

dual Kantorovich formulation for V SCE
ee [ρ], defining the Kantorovich potential u(r), is:20

V SCE
ee [ρ] = max

u

{∫
u(r)ρ(r)dr :

N∑
i=1

u(ri) 6
N∑
i=1

N∑
j>i

1

|ri − rj|

}
. (12)

Equation 12 is a linear programming problem with an infinite number of constraints, which

could be dealt with by readapting optimal transport algorithms to the SCE functional, a

research goal that is the object of ongoing efforts.37 In a brute force approach, Mendl and

Lin22 reformulated the problem in terms of a nested optimization, by introducing a functional

g[vSCE] of vSCE(r):

g[vSCE] = min
{ri}

N∑
i=1

N∑
j>i

1

|ri − rj|
−

N∑
i=1

vSCE(ri), (13)

and then showed that V SCE
ee [ρ] can be found via the following nested optimization:

V SCE
ee [ρ] = max

vSCE

{∫
vSCE(r)ρ(r)dr + g[vSCE]

}
= max

vSCE

{
min
{ri}

{
N∑
i=1

N∑
j>i

1

|ri − rj|
−

N∑
i=1

vSCE(ri)

}
+

∫
vSCE(r)ρ(r)dr

}
.

(14)

Eq 14 is equivalent to eq 12 of reference 8, obtained by generalizing the Lieb Legendre

transform formulation36 to the SCE functional.

4 The SCE Functional for the Hydrogen Molecule

4.1 Kantorovich formulation

To solve the Kantorovich problem for the H2 molecule, we have used cylindrical coordinates

(z, h, θ). The two protons lie along the z-axis, with the molecular center of inversion at

10



the origin of the coordinate system, h denotes the distance from the z-axis, and θ is the

azimuthal angle. Since the electron density does not depend on θ, ρ(r) = ρ(h, z), we have

vSCE(r) = vSCE(h, z). Minimization of the SCE classical potential energy8 immediately yields

for the azimuthal angles of the two electrons |θ1 − θ2| = π for any values of the other four

coordinates, resulting in a 4-dimensional potential energy function:

Epot = −vSCE(z1, h1)− vSCE(z2, h2) +
1√

(h1 + h2)2 + (z1 − z2)2
. (15)

In order to parametrize the SCE potential vSCE(r), Mendl and Lin22 introduced a “pseu-

docharge” m(r) to solve eq 14 numerically:

vSCE(r) =

∫
m(r′)

|r− r′|
dr′, (16)

with the following constraint on it:

∫
m(r)dr = N − 1. (17)

The role of the “pseudocharge” is to preserve the asymptotic behavior of the SCE potential.

Being a functional derivative of a self-interaction free functional, the SCE potential decays

for |r| → ∞ as N−1
|r| .8,10,11 They solved the Kantorovich dual problem for small atoms and

a model trimer molecule (with up to six electrons) parametrizing the “pseudocharges” with

gaussians centered along the three axes joining the three “atoms” with the symmetry center

of the “molecule”.

Here we want to include the physics behind the SCE problem in the parametrization

of vSCE(r). From eq 7 we see that SCE transforms the electron-electron repulsion into an

effective one-body potential that exerts the same net force. This potential has, on the

density of non-interacting electrons, the same effects of the electron-electron repulsion: it

has to localize the charge more on the atoms, removing it from the midbond region.38 This
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is realized through “bumps” or barriers in the potential. The “bumps” are present in the

exact vHxc(r) and vSCE(r) and they are crucial to capture the physics of charge localization

in strongly correlated systems within the KS framework.11,12,38,39 The standard approximate

KS potentials lack this feature, displaying the well known deficiencies of approximate DFT.40

The “bump” is present at the bond midpoint of H2 at longer internuclear distances and it

localizes the electrons around the protons.38,39 If one uses the “pseudocharge” algorithm of

Mendl and Lin with the “pseudocharges” centered between the center of the molecule and

the two H atoms, the corresponding vSCE(r) will have two “bumps”, instead of one at the

bond midpoint.

In this work we parameterize vSCE(r) directly, by modeling the bump in the midbond

region. Taking into account the asymptotic behavior of the SCE potential and the symmetry

of the H2 molecule, we use the following ansatz for vSCE(r):

vSCE(z, h) =
m∑
i=1

Aie
−piz2−qih2 +

erf
(
a
√
h2 + z2

)
√
h2 + z2

(18)

where Ai, fi, gi and a are a set of parameters. The SCE potential of eq 18 decays as 1
|r| for

large r and the ansatz is flexible enough to create a “bump” around the bond midpoint.

We have performed the nested optimization of eq 14 to calculate V SCE
ee [ρ] on a post-

functional level from a FCI density obtained from the GAMESS-US package,41 within aug-cc-

pV6Z basis set of Dunning.42 We fitted the obtained density on a sum of Gaussian functions

centered along the nuclear axis, so the density reads as follows:

ρ(z, h) =

Q∑
i=1

αi

(
e−β

2
i ((z−γi)2+h2) + e−β

2
i ((z+γi)

2+h2)
)
, (19)

where αi, βi and γi are fitting parameters. This way, the term
∫
vSCE(r)ρ(r)dr which appears

in eq 14 can be evaluated analytically (see Appendix). The nested optimization of eq 14 has

then been done numerically for a set of inter-atomic distances.
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4.2 Dissociation curve from the Kantorovich problem

From the numerical maximization of eq 14 we have obtained V SCE
ee [ρ]. From the same density,

we also constructed Ts[ρ] and the expectation of the external potential. The resulting KS SCE

dissociation curve is shown in Figure 1. We compare the KS SCE results with the ones for the

B3LYP functional, restricted Hartree-Fock (HF), full-CI and the nonlocal radius functional

(NLR),19 which is meant to be an approximation for KS SCE. The B3LYP, restricted HF

and full-CI dissociation curves were calculated with the GAMESS-US package,41 within the

same aug-cc-pV6Z basis set of Dunning.42 The NLR functional is built from a a model for

the xc hole in the strong-correlation limit, whose details are given in ref 19, and the NLR

data in Figure 1 were taken from the same reference.

As expected from the 1D model studied in ref 17 and the 3D implementation of ref 15,

we see that around equilibrium the KS SCE error is very large, due to the tendency of KS

SCE to over-correlate the electrons. With the increase of the internuclear distance, KS SCE

starts to be more accurate, becoming exact in the dissociation limit. The accuracy of the

KS SCE functional in the limit R → ∞ can be understood by looking at the shape of the

very accurate adiabatic connection curves Wλ[ρ] = V λ
ee[ρ] − EH[ρ] for H2 obtained by Teale

et al.43 The slope of Wλ[ρ] at λ = 0 is getting more negative as the bond length increases

and it diverges at the dissociation limit. For shorter bond lengths the exact Wλ[ρ] curve

for 0 ≤ λ ≤ 1 is significantly above the W∞[ρ] value (Wλ[ρ] ≈ W∞[ρ] corresponds to the

KS SCE approximation). This leads to a serious overestimation (in absolute terms) of the

(negative) area above the Wλ[ρ] = W∞[ρ] line with respect to the area above the exact Wλ[ρ]

curve. On the other hand, for large bond lengths, the accurate adiabatic curves have very

negative slope at λ = 0 with Wλ[ρ] values close to W∞[ρ], even for small positive values of

λ. This results in a very small difference between W∞[ρ] and Exc[ρ] for large finite bond

lengths, the two becoming equal as the separation between the two protons goes to infinity.

The NLR functional19 results are very close to the ones from the KS SCE functional,

showing that the former is a good approximation for the latter.

13



Figure 1: H2 dissociation curve obtained by the following methods: restricted Hartree-Fock,
B3LYP, FCI, KS-SCE and NLR functional of ref 19

4.3 Co-motion function from the Kantorovich problem

Once we have solved the Kantorovich problem, we already have the value of V SCE
ee [ρ] (the

maximum in eq 14), and its functional derivative (the maximizing potential in eq 14), so

that we can bypass the co-motion functions. However, as said, the co-motion functions can

be used to build corrections beyond KS SCE (which are the object of the next section 5)

and to build approximations to the SCE functional.

In the special case N = 2 we can obtain the co-motion function f(r) from the Kantorivch

potential20 by solving eq 7 for f(r):

f(r) = r +
∇vSCE(r)

|∇vSCE(r)|3/2
, (20)

which, in our case, corresponds to obtaining the fz and fh components of the co-motion

function in cylindrical coordinates:

fz(z, h) = z +
∂vSCE(z,h)

∂z((
∂vSCE(z,h)

∂z

)2

+
(
∂vSCE(z,h)

∂h

)2
) 3

4

, (21)
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fh(z, h) =

∣∣∣∣∣∣∣∣∣h+
∂vSCE(z,h)

∂h((
∂vSCE(z,h)

∂z

)2

+
(
∂vSCE(z,h)

∂h

)2
) 3

4

∣∣∣∣∣∣∣∣∣ . (22)

The computed co-motion function satisfies the group properties given in eq 5, which, in this

case, is just f(f(r)) = r. This can be easily verified by simply noticing that it always holds

∇vSCE(r) = −∇vSCE(f(r)) (action-reaction principle).

In Figure 2 we show samples of strictly-correlated positions {r, f(r))} for the H2 molecule

density at equilibrium distance, R = 1.4, and at a stretched configuration, R = 5.0. The two

nuclei lie on the horizontal axis and are denoted with green filled circles. We have selected a

series of positions rA, rB, ... by placing the reference electron close to the right nucleus and

moving it away from it perpendicularly to the bond axis. We have also set the reference

electron at a distance of 0.2 a.u. from the bond axis, and we have moved it parallel to it.

The corresponding positions f(rA), f(rB), ... appear, as expected, below the left nucleus.

5 Corrections to the SCE functional for the H2 molecule

The KS SCE approximation is very accurate for systems that are close to the strongly-

correlated regime. However, as soon as the effect of correlation is not profound, the KS

SCE energies are unacceptably low. While in some systems studied in physics, such as

electrons confined at semicondutctor hetereostructures interfaces in quasi-1D11 and quasi-

2D geometries,12 the amount of correlation is directly related to a single parameter, so that

it is possible to predict when KS SCE will be accurate, chemical systems are more delicate

in that sense: they are often in between the strong and the weak correlation regimes and

it is not easy to say a priori whether the system is very correlated or not. It is for that

reason that we need to have “indicators” that can signal wether the overcorrelation of the

SCE functional needs to be suppressed.

To recover the Hohenberg Kohn functional starting from KS SCE, we have to construct
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Figure 2: Samples of strictly correlated positions {r, f(r)} for the H2 molecule at equilibrium
(R = 1.4) and in a stretched configuration (R = 5.0). The two nuclei in each case lie along
the horizontal axis and are shown with green filled circles. Each pair of strictly-correlated
positions is labeled with the same letter, e.g., {A,A} = {rA, f(rA)}.

16



the functionals Tc[ρ] and V d
ee[ρ] of eq 8. We consider here two different approaches to construct

the correcting terms, both based on the use of the co-motion function f(r).

5.1 Corrections based on the SCE interpaticle distance

In refs 11,18 and 19, a simple correction to KS SCE in terms of the local density only (so

without using the co-motion functions) has been introduced. The correction was based on

the idea of making the approximate Hohenberg-Kohn functional F [ρ] = Ts[ρ] + V SCE
ee [ρ] +

Ekcd[ρ] exact for the homogeneous electron gas (HEG), where Ekcd[ρ] is an approximation

for Tc[ρ] + V d
ee[ρ]. This requires adding in the exchange-correlation energy of the HEG

(i.e. the LDA xc energy) and subtracting out the SCE xc energy evaluated on the uniform

gas: Ekcd[ρ] ≈ ELDA
xc [ρ] −W LDA

∞ [ρ]. The term W LDA
∞ [ρ] was obtained by using the common

assumption that the SCE (λ or rs → ∞) xc energy of the HEG can be obtained from the

energy of the bcc Wigner crystal. This assumption, however, has recently been questioned,44

so that it is actually not known what is the exact value of the SCE xc energy of the HEG:

we only know that it has the form −c/rs and we have some bounds for the positive constant

c.44 Disregarding for a moment this issue, we can, as in refs 11,18, evaluate the xc energy

densities (for both LDA and SCE), as usual, in terms of the local Wigner–Seitz radius

rs(r) =
1(

4
3
πρ(r)

)1/3
. (23)

Unfortunately, this approximation turns out to be very drastic. We have found that, for

H2, it yields energies that are even higher than the Hartree-Fock ones. Even worse, this

approximation fails to recognize one-electron systems (such as H or He+) and effectively

one-electron regions (such as those in stretched H2) as non-interacting, which is one of

the strengths of the SCE method. This problem is independent of the value we use for the

constant c in the SCE xc energy of the HEG: it stems from the local nature of the correction.

In the stretched H2 molecule, the local density on each proton is high, so that the LDA
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approximation is obviously physically wrong: it assigns to the xc energy the same value as

for a high-density, weakly correlated, HEG. The stretched H2 molecule is, physically, more

similar to a Wigner crystal, where the electrons are kept apart due to the dominance of

their mutual repulsion. In the HEG, the Wigner-Seitz radius rs is a measure of the average

electron-electron distance. The co-motion function allows us to recognize, in each point of

space, that the interelectronic distance is large, even when the local density is high. This

can be done by redefining the Wigner-Seitz radius as the distance between the two electrons,

which is uniquely defined in each point of space in the SCE framework:

rSCE
s (r) = |r− f(r)| , (N = 2) (24)

The rSCE
s (r) radius encodes two-body property information of highly nonlocal character (in

terms of the density), despite being a one-body property itself. This is crucial for systems

such as stretched H2, where the effective Wigner–Seitz radius should go like the increasingly

large bond-length R in regions near the atoms, but where the usual local Wigner-Seitz

radius rs(r) is of order 1. The standard local density functional radius rs(r) thus produces

a correction which is non-zero as R → ∞, unlike the nonlocal density functional radius

rSCE
s (r), which dissociates significantly better. A similar definition (retaining the nearest

neighbour distance) would also work for a chain of H atoms, but for larger molecules one

should think of a more general definition, in order to distinguish core and valence.

The simplest way to build approximations based on the radius rSCE
s (r) is to insert it

into the LDA correction used in refs 11,18, replacing the standard Wigner-Seitz rs(r). In

Figure 3 we show the dissociation curve for H2 corresponding to this approximation (curve

labeled “nonlocal”). The energies at the equilibrium region are substantially improved with

the respect to KS SCE. However, although asymptotically the right dissociation limit is

reached when R→∞, the limit is approached too slowly, producing a positive region in the

dissociation curve, similarly to other methods such as the random-phase-approximations.45
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One of the biggest challenge for chemistry is, indeed, to bridge the weak and the strong

correlation regimes in the right way.

In general, the two-body information encoded in rSCE
s (r) can be used in many different

ways to build approximate functionals. Other promising routes could be also based on

the exploration of the kinetic correlation part (which is still very important also at strong

correlation9,46), using the SCE conditional amplitude.39,47

Figure 3: H2 dissociation curves obtained by the following methods: restricted Hartree-Fock,
B3LYP, FCI, LDA correction with the redefined Wigner–Seitz radius of eq 24 added to KS
SCE and KS SCE

5.2 Restricted Mode Zero Point Energy Correction

If we expand the Hohenberg-Kohn functional around λ → ∞, the next leading term after

the SCE functional should be given by zero-point oscillations around the SCE minimum,9

although there is still no rigorous proof for that, but only numerical evidence.33,48 The

expansion of the integrand in eq 2 around λ→∞ should be:9

V λ→∞
ee [ρ] = V SCE

ee [ρ] +
V ZPE
ee [ρ]√
λ

+O(λ−p) (25)
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where p ≥ 5/4, and the “ZPE” acronym stands for the “zero-point energy”, corresponds to

the vibrational energy of small electronic oscillations around their SCE positions. For N

electrons in D dimensions this energy has the simple form9,17

V ZPE
ee [ρ] =

1

2

∫
dr
ρ(r)

N

DN−D∑
n=1

ωn(r)

2
. (26)

The electron vibrational frequencies are defined as9

ωn(r) =
√
an(r), (27)

where an(r) are the eigenvalues of the Hessian matrix composed of the second order deriva-

tives of the potential energy of the SCE system (eq 15 with the angular degrees of freedom

included) with respect to all the electronic coordinates. Inserting the expansion of eq 25 into

eq 2 we obtain the correction for Tc[ρ] and V d
ee[ρ]:9,17

Tc[ρ] ≈ V d
ee[ρ] ≈ V ZPE

ee [ρ], (28)

as expected from the fact that the ZPE is half kinetic and half potential energy. The total

correction Tc[ρ] + V d
ee[ρ] is generally too large.17 However, one can argue that for chemical

systems usually Ts[ρ] is much closer to the true kinetic energy than V SCE
ee [ρ] to the true ex-

pectation of V̂ee, so that by correcting only the electron-electron part the balance is restored.

In what follows we then consider the correction Tc[ρ] ≈ 0, and V d
ee[ρ] ≈ V ZPE

ee [ρ].

We also make another approximation, in order to simplify the calculations: we approx-

imate the Hessian matrix with respect to the symmetry of the system, allowing the two

electrons to vibrate only in a plane. The plane is determined by their two SCE positions

and the internuclear axis. This approximation sets all the derivatives of Epot with respect

to the azimuthal coordinates (θ1 and θ2) to 0. We call this approximation restricted-mode

Zero-Point-Oscillations (rm-ZPE).
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In Figure 4 we show the dissociation energy curve with this correction. Again, we see

that the energy is highly improved at equilibrium and that the exact dissociation limit is

reached too slowly, even if better than with the non-local correction of the previous section.

Figure 4: H2 dissociation curves obtained by the following methods: restricted Hartree-Fock,
B3LYP, FCI, KS SCE with correction for the electron decorrelation energy obtained by the
restricted-mode Zero-Point-Oscillations (rm-ZPE) of electrons and KS SCE

6 Energy densities

Modelling the adiabatic connection has been an important milestone in the construction of

approximate xc density functionals (see, e.g., refs 49–52). While most approximations focus

on the physically relevant regime 0 ≤ λ ≤ 1, interpolating between the λ → 0 and λ → ∞

limits seems a rigorous way to overcome our lack of knowledge about the λ = 1 region. The

interaction strength interpolation (ISI) of Seidl and coworkers7,31 is a pioneering density

functional of this latter class. Newer interpolation models, such as the revised ISI9 and the

recent interpolation models of Liu and Burke,53 have a functional form that behaves better

than ISI about the λ → ∞ limit. These functionals are able to treat different correlation

regimes accurately, but the development of DFT in this direction encounters a fundamental

problem: the lack of size consistency, as these functionals depend non-linearly on global
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(integrated over all space) quantities.

Size consistency can be recovered if the interpolation is done locally along the adiabatic

connection.32 A local version of eq 2 for the xc energy is given by:

Exc[ρ] =

∫
dr ρ(r)

∫ 1

0

dλwλ[ρ](r). (29)

It is important to note that a choice of wλ(r) is not unique, as we can add to it any quantity

that integrates to zero when multiplied by ρ(r) and still get the same Exc[ρ]. For this reason

it is very important to do the interpolation within the same definition or the same “gauge”

of the energy density for all the ingredients used (e.g., at λ = 0 and λ = ∞). A physically

sound and commonly used “gauge” of the energy density is the one given in terms of the xc

hole potential:32,54,55

wλ[ρ](r) =
1

2

∫
hλxc(r, r

′)

|r− r′|
dr′, (30)

where hλxc(r, r
′) is the xc hole obtained from the wave function Ψλ[ρ] of eq 2.

At λ = 0 this energy density corresponds to the usual exchange-hole potential, w0(r),

while for λ→∞ we have32

w∞(r) =
1

2

N∑
i=2

1

|r− fi(r)|
− 1

2
vH(r), (31)

where vH(r) is the Hartree potential.

In Figure 5 we show the SCE energy density w∞(r) in the “gauge” of eq 30 at R = 1.4 and

R = 8.0 along the internuclear axis (h = 0), together with the w0(r) and w1(r) curves. The

SCE energy density w∞(r) of eq 31 has been calculated from the co-motion function described

in section 4.3, while w0(r) and w1(r) were taken from ref 32. All the three quantities w0(r),

w1(r) and w∞(r) correspond to the full-CI density obtained from the GAMESS-US package,41

within aug-cc-pVTZ basis set of Dunning.42 As expected, near the equilibrium (R = 1.4) the
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physical energy is much closer to w0(r) than w∞(r) . On the other hand, for the stretched

(R = 8.0) molecule the physical energy density is much closer to w∞(r). For this reason, the

inclusion of the exact w∞[ρ](r) (or of a good model for it19,32) as an ingredient to build local

interpolations along the adiabatic connection is a very promising approach for the treatment

of strong correlation in DFT.

7 The constant of Levy and Zahariev in the strong-

interaction limit of DFT

Levy and Zahariev27 showed that the physical ground state energy becomes equal to the

sum of the occupied KS orbital energies if the corresponding Hxc potential is shifted by a

nontrivial constant C[ρ] equal to

C[ρ] =
EHxc[ρ]−

∫
vHxc[ρ](r)ρ(r)dr∫
ρ(r)dr

. (32)

They suggested that it might be easier to model the shifted potential v̄Hxc[ρ](r) ≡ vHxc[ρ](r)+

C[ρ] rather than the usual xc potential that goes to zero asymptotically. Although in general

the model potential would not be a functional derivative, the corresponding physical energy

could be obtained without the need of a line integral,56,57 as it would be always given by the

sum of the KS eigenvalues.

The Kantorovich potential of eqs 11 and 12 is exactly the strong-interaction limit of the

shifted potential defined by Levy and Zahariev. To see this, consider that the the maximizing

potential u(r) in eq 12 yields the functional V SCE
ee [ρ] by integration

V SCE
ee [ρ] =

∫
u(r)ρ(r)dr. (33)

When V SCE
ee [ρ] is used to approximate the Hxc functional, its functional derivative, which

can be obtained exactly from eq 7, is defined, as usual, up to an arbitrary constant. If we
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Figure 5: Energy densities in the gauge of xc hole of eq 30 for H2 at R = 1.40 and R = 8.0
at different λ values: 0, 1 and ∞
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choose to use the Kantorovich potential u(r) as functional derivative, the constant is fixed

by the linear constraints in the dual Kantorovich problem of eq 12. In this case the KS SCE

equations read

−1

2
∇2φi(r) + u(r)φi(r) + vext(r)φi(r) = εiφi(r). (34)

By multiplying from the left both sides of eq 34 by φ∗i (r), integrating over r and summing

all the equations for the occupied orbtials, we obtain

Ts[ρ] +

∫
u(r)ρ(r)dr +

∫
vext(r)ρ(r)dr =

∑
i

εi. (35)

By virtue of eq 33, we see that the left-hand side of eq 35 gives the physical energy in the

approximation V SCE
ee [ρ] ≈ EHxc[ρ].

The constant C[ρ] has also a very clear physical meaning in the strong-interaction limit.

Consider the hamiltonian of the standard DFT adiabatic connection

Ĥλ = T̂ + λV̂ee + V̂ λ, (36)

where the multiplicative one-body potential V̂ λ =
∑

i v
λ(ri) enforces the density constraint

in eq 1. When λ→∞ we have8,9

Ĥλ→∞ = λ
(
V̂ee + V̂SCE

)
. (37)

The corresponding classical hamiltonian V̂ee + V̂SCE defines a classical electrostatic problem

with a degenerate minimum, given by the subspace parametrized by the co-motion functions.

The total energy of the system in this case is exactly NC[ρ], where N is the number of

electrons. In other words, in the λ→∞ limit we have

C[ρ] =
1

N
lim
λ→∞

〈Ψλ[ρ]|Ĥλ|Ψλ[ρ]〉
λ

, (38)
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so that C[ρ] is the total electrostatic energy per electron. Since the minimum of the hamilto-

nian of eq 37 is degenerate, we only need one configuration of the 3D subspace parametrized

by the co-motion functions (only one value of r) to compute C[ρ]. For example, in the N = 2

case considered here we can choose to compute C[ρ] from the configuration corresponding

to r = 0. In this case the second electron in the system is at infinity, so that there is no

electron-electron contribution and we obtain C[ρ] = 1
2
vSCE(0).

From the scaling properties of the exact Hartree-exchange-correlation (Hxc) energy func-

tional58,59 we have that if we define ργ(r) = γ3ρ(γ r), with γ > 0, then10,48 EHxc[ργ→0] →

V SCE
ee [ργ]. Equation 38 then provides a constraint for building approximations to C[ρ].

8 Conclusions and Perspectives

In this work we have used the Kantorovich dual formulation to compute the hydrogen

molecule dissociation curve using the the strong interaction limit of DFT as an approx-

iamtion for the exchange-correlation functional (KS SCE approach). Since the KS SCE

energies are, as expected,15,17 way too low around equilibrium, we have explored corrections

beyond the KS SCE method. It turned out that a simple LDA correction to KS SCE per-

forms very poorly, yielding energies that are higher than Hartree-Fock ones. It is for that

reason that we considered two different nonlocal corrections to KS SCE. The inclusion of

such corrections improves the overall accuracy of KS SCE, although further improvements

are still needed. The main ingredient of the corrections are the co-motion functions com-

puted from the SCE potential, using an exact relation between the potential and the optimal

map. The challenge is to generalize KS SCE and its corrections to larger molecular systems.

For diatomics we can still try to optimize the algorithm of the method presented in this

work, but for larger systems we will probably need to approximate the SCE part, although

recent promising work from the optimal transport community could yield eventually very

efficient SCE algorithms.37
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Another way to use the SCE information in the construction of approximate functionals

is by interpolating locally between the weak and the strong-interaction limits of DFT. We

touched upon this approach and computed the SCE energy densities for H2 in the “gauge”

of the electrostatic potential of the xc hole. Previously, the SCE energy densities in this

“gauge” were available only for spherically symmetric systems. This information, combined

with exact or approximate local quantities from the weak-interaction limit, will allow us to

test different interpolation models locally. A crucial, missing, ingredient for this approach is

a local indicator of correlation (in the right “gauge”), to determine the slope around λ = 0 of

the local adiabatic connection curve. This local indicator will be first obtained in an exact

way using the Legendre transform algorithms,43 and then approximated. This study is the

the object of our ongoing work.

We also showed that in the Kantorovich dual formulation the constant in the Kohn-Sham

potential recently introduced by Levy and Zahariev27 arises very naturally, with a physically

transparent meaning.

A Analytical expressions for
∫
ρ(r)vSCE(r)dr

With the parametrizations of vSCE(r) of eq 18 and of ρ(r) of eq 19, the integral
∫
ρ(r)vSCE(r)dr

becomes:

∫ 2π

0

dθ

∫ ∞
−∞

dz

∫ ∞
0

hdh v(z, h)ρ(z, h) = 2π3/2

m∑
i=1

Q∑
j=1

αj

(
Aie

−
β2j piγ

2
j

β2
j
+pi√

β2
j + pi

(
β2
j + qi

) +

erf

(
aβjγj√
a2+β2

j

)
β3
j γj

)
.

(39)

-
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