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Introduction: Charge Transfer in Practice

CT: transfer of electronic charge among spatially separated regions by transitions between ground
and excited states
e.g. in photosynthesis, organic photovoltaics, Organic Light Emitting Diodes (OLEDs)

1. Cathode (–), 2. Emissive Layer, 3. Emission of
radiation,
4. Conductive Layer, 5. Anode (+)

conductance of holes (4.) established by charge transfer in polymers
“During the past years simulation methods have been developed to compute the properties of OLEDs from their chemical composition. This allows

for a cost efficient pre selection of molecules without elaborate synthesis and experimental characterization.” (wikipedia)

A. Mirtschink, TUD 2015 2/26



Introduction: Simulating OLEDs

P Kordt et al., Adv. Funct. Mater. 25 (2015) 1955

Bridging the scales with DFT
highly inhomogeneous compounds → simulation boxes with 107 atoms
functional approximations fail in the CT description
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Electronic Structure

QM: a resting atomic system is described by solutions to the many-body SE

ĤΨ(x1 . . .xN ) = EΨ(x1 . . .xN )

I wavefunction Ψ function of (D + 1)× N coordinates
I expensive to compute

HK theorem: Observables expressed as functional of ρ, in particular energy

E [ρ] = F [ρ] +
∫

dr ρ(r)vext(r)

I ρ is a function of D coordinates
I ground state computation by variation of density
I exact expressions for the universal functional are computationally not efficient
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Density Functional Theory

HK theorem: Observables expressed as functional of ρ, in particular energy E [ρ]

E [ρ] = F [ρ] +
∫

dr ρ(r)vext(r)

I unique mapping ρ(r)↔ v(r)
I uniqueness holds also beyond the physical e	e	 interaction

{ρ(r), V̂ee} ↔ vext(r)↔ Ψ

{ρ(r), Ŵee} ↔ ṽ(r)↔ Ψ̃

I Levy-Lieb: ṽ guarantees Ψ̃→ ρ constraint

F̃ [ρ] = min
Ψ̃→ρ
〈Ψ̃|T̂ + Ŵee|Ψ̃〉
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Kohn-Sham DFT

KS: introduce non-interacting reference system

{ρ(r), Ŵee = 0} ↔ vs(r)↔ Φ

I which ground state WF is a Slater determinant Ψ̃→ Φ

the ground state energy of the physical system is

E [ρ] = 〈Φ [ρ] |T̂ |Φ [ρ]〉+ UH [ρ] + Exc [ρ] +
∫

vext(r)ρ(r)

Φ is obtained from the single-particle equations with the effective KS potential vs[
−

1
2
∇2 + vs(r)

]
φi(r) = εiφi(r)

I vs(r) = vext(r) + vH (r) + vxc(r)
I vxc accounts for many-body effects
I vxc(r) = δExc [ρ]

δρ(r)

∣∣
ρ=ρ0

I in principle exact, practical implementations use approximations
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Exc in Practice
traditional approximations
according to Jacob’s ladder

suitable if kinetic energy dominates
I weak electronic correlation

fail for strong correlation
I electron localization due to dominating

electronic repulsion
I need of a non-local functional

for higher rungs
I rigor is lost (symmetry breaking)
I computational effort increases
I physical meaning of orbitals mitigated

problematic:
I long-range charge transfer
I bond stretching
I Coulomb blockade

alternative strategies for the construction of approximations: adiabatic connection
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Adiabatic Connection of DFT

HK theorem: unique mapping for any e	e	 interaction

{ρ(r), Ŵee} ↔ ṽ(r)↔ Ψ̃

we consider

Ŵee = λV̂ee, λ ∈ [0,∞)

I λ = 1 ... physical system, λ = 0 ... Kohn-Sham reference system
λ→∞ ... reference system of strictly correlated electrons1 (SCE)

for a given ρ and λ a unique wavefunction Ψλ [ρ] can be found from

min
Ψλ→ρ

〈Ψλ|T̂ + λV̂ee|Ψλ〉

Ψλ [ρ] can be used to compute Exc

Exc [ρ] =
∫ 1

0
dλ 〈Ψλ [ρ] |V̂ee|Ψλ [ρ]〉 −UH [ρ]

=
∫ 1

0
dλ Wλ [ρ]

1M. Seidl, P. Gori-Giorgi, A. Savin, PRA 75 (2007) 042511
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Approximate Exc From the Adiabatic Connection

we use an approximation for Wλ

I compute Wλ in the limits λ→ 0,∞
I obtain W̃λ by interpolation
I use W̃λ to compute Ẽxc

Ẽxc [ρ] =
∫ 1

0
dλ W̃λ [ρ]

example: Seidls ISI interpolation2

W̃λ = W∞ +
W0 −W∞√

1 + 2Xλ

X =
W ′

0
W∞ −W0

W ′
0 from Görling-Lieb perturbation theory

W∞ approximated from point-charge-plus-continuum model
models interpolating between W0 and Wλ≤1

I Becke: linear models for W̃λ → half & half, (B3LYP)
I Ernzerhof, Burke, Perdew: two legged models, curved models
I Mori-Sanches, Cohen, Young: MCY functionals

2M. Seidl, PRA 60 (1999) 4387
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Interpolations Along the Adiabatic Connection

non-linear interpolation models for Wλ are not size-consistent
interpolations performed locally are size-consistent

Wλ [ρ] =
∫

dr ρ(r)wλ [ρ] (r)

wλ(r) ... energy density3

wλ [ρ] (r) =
1

2ρ(r)

∫
dr′ n2(r, r′)
|r− r′|

−
∫

dr′ ρ(r′)
|r− r′|

3AM, M. Seidl, P. Gori-Giorgi, JCTC 8 (2012) 3097
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Ingredients for Local Interpolations of wλ(r)

λ = 0: non-interacting reference system

w0(r) =
1
2

∫
dr′ ρx(r, r′)
|r− r′|

with the exchange hole ρx given in terms of KS orbitals ψ
λ→∞: strongly correlated reference system

wλ→∞(r) =
1
2

N∑
i=2

1
|r− fi(r)|

−
∫

dr′ ρ(r′)
|r− r′|

where f are the co-motion functions that give the positions of the strictly correlated
electrons (point charges)

e.g. 2e− in harmonic oscillator potential

r1 r2 = f(r1) r′1 r′2 = f(r′1)
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Strictly Correlated Electrons (SCE)4

SCE gives positions of e	 for a given density

ρ(r)→ fi(r)

QM: probability of finding a e	 in volume element dr =

probability of finding another e	 in volume element dfi(r)

ρ(r)dr = ρ(fi(r))dfi(r)

density for 2D quantum dot, N=7

co-motion functions for 2D quantum dot,
N=7

4P. Gori-Giorgi, M. Seidl, PCCP 12 (2010) 14405
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Strictly Correlated Electrons

the SCE wavefunction is obtained as sum of all allowed configurations {r, fi(r)}

|ΨSCE(r1 . . . rN )|2 =
1

N !

∑
℘

∫
dr ρ(r)

N
δ(r1 − f℘(1)(r))× . . .× δ(rN − f℘(N)(r))

i.e. we must have that the potential energy for each configuration is the same - this is
guaranteed by the SCE potential

EPot [ρ] (r) =
N∑

i>j

1
|fi(r)− fj(r)|

+ vSCE [ρ] (r)

the SCE potential can also be interpreted as the one that compensated the force of the other
N − 1 exerted on a e	

∇vSCE [ρ] (r) = −
N∑

i=2

r− fi(r)
|r− fi(r)|3

,
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The SCE Functional

total electrostatic energy for ΨSCE → SCE functional

V SCE
ee [ρ] =

∫
dr ρ(r)

N

N∑
i>j

1
|fi(r)− fj(r)|

the SCE wavefunction minimizes the scaled Levy-Lieb functional in the λ→∞ limit

min
Ψλ→ρ

〈Ψλ|T̂ + λV̂ee|Ψλ〉
λ→∞
≈ min

Ψλ→ρ
〈Ψλ|λV̂ee|Ψλ〉 = λV SCE

ee [ρ]

the potential vλ [ρ] (r) satisfying the Ψλ → ρ constraint in the λ→∞ limit is related to the
SCE potential

lim
λ→∞

vλ [ρ] (r)
λ

= vSCE [ρ] (r)

furthermore it can be shown that the functional derivative of the SCE functional is the SCE
potential

δV SCE
ee [ρ̃]
δρ̃(r)

∣∣∣
ρ̃=ρ

= −vSCE [ρ] (r)

the SCE functional is highly non-local,
but its functional derivative is still a
multiplicative potential
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KS-DFT for Strong Correlation5

ṽSCE [ρ] = −vSCE [ρ] can be used as approximation for the electronic interaction in the KS
reference system

vH [ρ] + vxc [ρ] ≈ ṽSCE [ρ]

i.e. we approximate the Hohenberg-Kohn functional

F [ρ] = min
Ψ→ρ

〈
Ψ|T̂ + V̂ee|Ψ

〉
≈ min

Φ→ρ

〈
Φ|T̂ |Φ

〉
+ min

Ψ→ρ

〈
Ψ|V̂ee|Ψ

〉

always a lower bound
exact in the weak- and
strong-correlation regime,
approximate in between
strong correlation in KS-DFT

5F. Malet, P. Gori-Giorgi, PRL 109 (2012) 246402
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Systems with Tuneable Correlation

FKS−SCE [ρ] = min
Φ→ρ

〈
Φ|T̂ |Φ

〉
+ min

Ψ→ρ

〈
Ψ|V̂ee|Ψ

〉
evaluation by the use of semiconductor quantum wires
show conductance quantization with transverse dimensions < 100 nm
correlation regime controlled by wire length
can be modeled with 1D harmonic oscillator and renormalized coulomb interaction6,7

CdTe quantum wire,
Liu et al., J Am Chem Soc

134 18797 (2014)

self-consistent restricted KS-DFT

2kf → 4kf
quantum phase transition

Coulomb blockade in DFT
requires quantum transport

simulationa

L CI KS-SCE ∆(%)
1 28.42 25.08 2.3
15 0.541 0.491 9.2
70 0.0602 0.06291 4.5

aAM, S. Kurth, P. Gori-Giorgi, A. Rubio,
in preparation

6F. Malet et al., PRL 109 (2012) 246402
7F. Malet, AM et al., PRB 87 (2013) 115146 A. Mirtschink, TUD 2015 16/26



Features of the SCE Potential

2kf → 4kf : strong correlation in DFT without symmetry breaking

bump in vxc localizes electrons → essential feature for bond dissociation8

8M.A. Buijse, E.J. Baerends, J.G. Snijders, PRA 40 4190 (1989)
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H2 bond dissociation9

CI

HF KS LDA

0th-order KS-SCE

0th-order KS-SCE + ZPE

KS LSDA

0th-order KS-SCE + isiZPE

en
er

gy
 [a

.u
.]

−1.6
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−1.4
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−1.2

−1.1

−1.0

RH-H [a.u.]
0 2 4 6 8 10 12 14

1D H2 molecule
KS-SCE self consistent

3D H2 molecule
KS-SCE on post-functional level

1D H2 molecule

bump in bond mid point vanishes for large
separations
even a small bump localizes electrons
bump is energetically not important for
large separations

9S. Vuckovic, L. O. Wagner, AM, P. Gori-Giorgi, JCTC 11 (2015) 3153
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DFT for He Isoelectronic Series10

H− unbound with traditional DFT functionals (εHOMO > 0)

0.5 1.0 1.5 2.0
N

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

ΕHOMO

Accurate

KS-SCE

KS-LDA

KS-GGA

KS-metaGGA

KS-SCE overbinds H− anion
I SCE potential has correct N−1/r decay → εH−

HOMO < 0
I SCE functional is SI free ESCE

H = Eexact
H

I SCE functional gives a lower bound to the energy ESCE
H− < Eexact

H−

note also: the SCE functional shows a smooth derivative discontinuity

10AM, C. J. Umrigar, J. D. Morgan III, P. Gori-Giorgi, JCP 140 (2014) 18A532
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DFT for He Isoelectronic Series

2e	 with decreasing nuclear charge Z → quantum phase transition to unbound system

Zaccurate
crit = 0.91, ZKS−SCE

crit = 0.73

corrections are needed: KS-SCE + LDA

F [ρ] = Ts [ρ] + V SCE
ee [ρ] +

∫
dr ρ(r)

(
εHEG

xc (r)− εSCE
xc (r)

)
Zcrit

Accurate 0.91 KS-LDA 1.22 KS-SCE 0.73
KS-GGA 1.23 KS-SCE+LDA 0.94
KS-metaGGA 1.21 KS-SCE+LVee,d 0.90
HF 1.03
B3LYP 1.14

KS-SCE+LDA is no more SI free
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Charge Transfer in DFT11

Model: stretched H2 in 1D

Absorption spectra at large separation:
I absorption spectra of isolated H atom
I + CT transition at

ω
CT
exact ≈ IH − AH − 1/R

time propagation of time-dependent
Schrödinger equation

ωCT
exact ≈ I D −AA − 1/R

= 0.670− 0.060− 0.067
= 0.542Ha

11AM, U. Giovannini, P. Gori-Giorgi, A. Rubio, in preparation
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Charge Transfer in DFT

CT transition in exact KS-DFT

ωCT
exDFT ≈ −ε

D
HOMO + εA,NLUMO + ∆xc − 1/R

any approximation needs
I correct 1/r decay εD

HOMO
I derivative discontinuity ∆xc
I non-local

SCE functional has this features → adiabatic TD-DFT
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H-Atom
stretched H2, d = 25aBohr, SCE

time propagation of time-dependent
Kohn-Sham equation

ωCT
SCE ≈ −ε

H
HOMO + εH

−
HOMO − 1/R

= 0.670− 0.089− 0.040
= 0.541Ha
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The SCE Kernel

for a formal explanation of the SCE results the SCE kernel needs to be considered within the
Casida equations
a 1s-1s model for the CT transition predicts the CT frequency at12

wCT = ∆εσσ∗ +
√

2∆εσσ∗Kσσ∗,σσ∗

Kσσ∗,σσ∗ =
∫

dr
∫

dr′χσ(r)χσ∗(r)fHxc(r, r′)χσ(r′)χσ∗(r′)

∆ε→ 0 for large R
kernel in K-matrix for large R needs to cause

I divergence in K to compensate for ∆ε→ 0
I give rise to 1/R term

the SCE kernel in 1D

f SCE
Hxc (x, x′) =

N∑
i=2

∫ x

−∞
dy w′′(|x − x′|)

θ(x′ − y)− θ(x′ − fi(y))
ρ(f (y))

12O.V. Gritsenko, S.J.A. van Gisbergen, A. Görling, E.J. Baerends, JCP 113 (2000) 8478
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SCE kernel 1D

the SCE kernel in 1D

f SCE
Hxc (x, x′) =

N∑
i=2

∫ x

−∞
dy w′′(|x − x′|)

θ(x′ − y)− θ(x′ − fi(y))
ρ(f (y))

for a model density out of two exponentials

R = 1 R = 14
for large R we have a plateau of high

f SCE
Hxc (−

R
2
,−

R
2

) =
1
R

1
ρ(0)

for large R we have a peak of high

f SCE
Hxc (0, 0) =

2
R

1
ρ(0)

note: a local kernel shows a non-zero value only for x = x′
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Conclusions

a rigorous strategy for the construction of approximate Exc has been presented
the SCE reference system was introduced
an approximate Exc was constructed by combining the KS- with the SCE reference system
the KS-SCE approximation is:

I non-local
I SI free
I derivative discontinuity
I accurate in the weak- and strong-correlation regime
I universal (bosons with dipolar interaction13)

can not be used for chemistry yet, because:
I inaccurate in the intermediate-correlation regime
→ corrections of LDA kind, local interpolations or higher order corrections to SCE

I the SCE functional can not be calculated for arbitrary 3D systems
→ co-motion functions are not unique in 3D
→ approximations to co-motion functions
→ model the strong-interacting limit (PC model, non-local radius model)

future:
I SCE in solids, esp. Mott insulator
I SCE for diatomics → SCE-DFTB

The SCE functional can lead to improved functional approximations. Before realistic 3D systems
can be tackled, however, the accuracy needs to be improved and a 3D implementation of the
functional should be developed.

13F. Malet, AM et. al,PRL 115 (2015) 033006
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